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Rife with proof sketches and severely lacking in examples, this document perhaps serves
best as a revision guide for an introductory course in category theory rather than as a place to
learn the material for the first time. The pedagogical aims are non-existent; any frustrations
caused to the reader (who may very well be myself in the future and nobody else) are entirely
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0 Yapping

0.1 Pedagogy Propaganda

Born out of my struggles with learning category theory, this document covers a strict subset
of the content taught in the Part III Category Theory course at the University of Cambridge,
taught by Peter Johnstone in the academic year 2024–2025.

So why write yet another set of notes on category theory? Especially when so many people
(who are more proficient in TEX than me) have already written up the same set of lecture notes
and have made them publicly available online? Well, these are mainly for myself. I highly doubt
anyone else but myself will read this, so I am under no pressure to make this more appealing
to the human eye.

There are, however, very noticeable differences if one compares this document with other
student-typed documents on the same course.

For starters, I have stripped away all numberings from definitions, theorems, propositions,
etc. The purpose is to avoid the infamous instances of “this follows from Lemma 2.3.16” in the
middle of a proof in Section 5. People who have seen Peter Johnstone’s lecture notes for this
course will notice that this approach is the polar opposite to the one he adopts for his notes.
This may or may not come back to bite me in the form of me not having any idea of what
result I used, but I will deal with that when I have to. I also (tried to) introduce definitions
only when we have to use it, so the amount of scrolling back up is hopefully minimal. Next,
in many footnotes, I define all dual notions. Part of learning category theory is to know which
arrows to flip for dual definitions and dual results, but I believe the dual definitions should be
explicitly spelled out. Far too many times, I have experienced flipping either too many or too
few arrows and then wasting too much time on an inherently flawed definition. Dual theorems
and dual proofs can of course be omitted. On the topic of theorems and proofs, many proofs
here are incomplete or simply proof sketches; I often find it easier to work off of an idea myself
than read someone else’s diagram chase. The intent of this document was never to be a place
where one learns category theory for the first time. To make things worse, there are virtually
no examples in this document.

As I already remarked, I highly believe not another soul will read this. So all of the above
was just me talking to myself.

0.2 Inspirational Quotes

“Communication among Mathematicians is governed by a number of unspoken rules.
One of these specifies that a Mathematician should talk about explicit theorems or
concrete examples, and not about speculative programs. I propose to violate this
excellent rule.”

— Saunders Mac Lane, 1969, in the paper Possible programs for categorists.

“Dear Diary,

It is Day 3 of category theory discourse. Sibling meets sibling on the battlefield,
adjoint functors clashing. There is not a single example to be found anywhere. Al-
gebraic geometers roam the land, spreading their perverse sheaves. May god have
mercy on our souls.”

— Daniel Litt, 2023, in a post on X.com, the Everything App (formerly Twitter).

“. . . I don’t like diagrams. When people draw what they mean I lose my ability to
understand.”

— Asaf Karagila, 2013, in a blog post titled On Leinster’s “Rethinking Set Theory”.
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“Indeed, the subject might better have been called abstract function theory, or perhaps
even better: archery.”

— Steve Awodey, 2006, in the book Category Theory.

“. . . if I use the word “topoi”, you can shoot me.”

— Ravi Vakil, in a draft of the book The Rising Sea: Foundations of Algebraic
Geometry.

“Once I was thinking what the category of my ex-girlfriends should be. Then I
realized I was treating women as objects.”

— Nikolaj Kuntner, 2015, in a discussion thread on nForum.

“. . . the “co” prefix alludes to a kind of duality. A lot of the time, these “co”
concepts arise by reversing arrows. . . . A set is an arbitrary container of things
called elements. . . . A coset — as the name implies — is an equivalence class of
a group element under the action of a fixed subgroup.”

— Sheafification of G, 2024, in a YouTube video titled What is the opposite of a
set?

0.3 Thank You for the Music

The Yoneda lemma tells us that our relationships to the people around us are just as (if not
more) important than our own personal story. There are many people who have aided me in
learning this subject. To highlight an incomplete list of such people, in no particular order, I
thank:

• Kit Liu and Kyle Thompson, my peers from my undergraduate years at the University of
Warwick, for keeping in touch with me and answering many ad hoc questions;

• Anand Rao Tadipatri and Jovan Gerbscheid, who (at the time of writing) are PhD students
in automated theorem proving from Wolfson College during my postgraduate year at the
University of Cambridge, with whom I had many conversations over dinner about category
theory;

• Bernardus Adri Wessels and Daniel Naylor, my peers from my postgraduate year at the
University of Cambridge, for helping me with many concepts and exercises. Incidentally,
Daniel Naylor also has a (much prettier) set of notes covering the Part III Category Theory
course in full, available here:

https://danielnaylor.uk/notes/III/Michaelmas/CT/CT.pdf.

And, of course, all the lecturers who taught me at the universities I attended.
Okay, enough chatter. Let’s begin.
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1 Categories

1.1 Everything Is a Category if You Try Hard Enough

Just as every other course in mathematics, we begin with a definition.

Definition
A category C consists of the following data:

• a collection ob C of objects;

• for each A,B ∈ ob C, a collection homC(A,B) of morphisms from A to B;

• for each A,B,C ∈ ob C, a binary relation ◦ : homC(B,C) × homC(A,B) → homC(A,C)
defining the composition of morphisms;

subject to the following two conditions:

• for each A ∈ ob C, there exists a (necessarily unique) morphism idA ∈ homC(A,A) such
that for all B,C ∈ ob C, all f ∈ homC(A,B), and all g ∈ homC(C,A)

f ◦ idA = f and idA ◦ g = g ;

• for all A,B,C,D ∈ ob C, all f ∈ homC(A,B), all g ∈ homC(B,C), and all h ∈ homC(C,D),

h ◦ (g ◦ f) = (h ◦ g) ◦ f .

For a category C, we write mor C :=
󰁖

A,B∈ob C homC(A,B) for the collection of all morphisms
in C. For f, g ∈ mor C, we write typically write fg in place of f ◦ g, provided the composition is

defined. For A,B ∈ ob C and f ∈ homC(A,B), we sometimes write f as A
f−→ B or f : A → B,

and we denote dom(f) := A and cod(f) := B for the domain and codomain of f respectively.

Definition
Let C be a category. A morphism A

f−→ B in C is:

• monic/a monomorphism if for all morphisms C
g−→−→
h

B in C, we have that

if fg = fh then g = h ;

• epic/an epimorphism if for all morphisms B
g−→−→
h

C in C, we have that

if gf = hf then g = h ;

• an isomorphism if there exists a morphism A
f−1

←−− B in C such that

f−1f = idA and ff−1 = idB .

For a morphism A
f−→ B in some category, we write A

f
↣ B if f is a monomorphism, we

write A
f
↠ B if f is an epimorphism, and we write A

f−→∼= B if f is an isomorphism. For any

objects A and B in some category, we write A ∼= B if there exists an isomorphism from A to B
in that category.

Note that isomorphisms are necessarily both monic and epic. The converse is not true:
there are morphisms which are monic and epic which are not isomorphisms, for example in
the category Top of topological spaces and continuous functions. There are categories where
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isomorphisms precisely coincide with morphisms which are both monic and epic, for example the
category Set of sets and functions (with domains and codomains specified). We call a category
C balanced if every morphism in C which is both monic and epic is also an isomorphism.

If C is a category, a collection D ⊆ C of objects and morphisms is a subcategory of C if D
itself is a category when we restrict the binary operation ◦ to D. A subcategory D ⊆ C is said
to be a full subcategory of C if for any A,B ∈ obD, we have that homD(A,B) = homC(A,B).

Perhaps one of the most common phrases in category theory is “the following diagram
commutes”. This phrase typically means, given an implied starting object A and ending object
B, all composite morphisms from A to B are equal. For example, consider the diagram

• •

•

f

h
g

with the objects unspecified and with morphisms f , g, and h. We say that the triangle above
commutes if gf = h. As another example, the following square

• •

• •

f

h g

k

commutes if gf = kh. One often writes the symbol ↻ in a diagram to indicate that it commutes.
With the triangle and square above, their commutativity would be indicated as follows:

• • • •

• • •

f

h
g

f

h ↻ g

k

↻

Note that commuting diagrams can be stacked on each other to produce a bigger commuting
diagram. For example, consider the diagram

• • •

• • •

f

h ↻

g

i ↻ j

k ℓ

consisting of two commuting squares

• •

• •

f

h ↻ i

k

and

• •

• •

g

i ↻ j

ℓ

, that is, if = kh and jg = ℓi.

Then, by Stokes’ theorem, we also have the commuting “outer diagram”

• •

• •

gf

h ↻ j

ℓk

That is, jgf = ℓkh. Of course, we also have jgf = ℓkh = ℓif .
I will stop drawing the circular arrows ↻ to indicate the commutativity of diagrams, for

my TEX skills aren’t that good and, frankly, I find them to more of a nuisance than helpful on
anything other than rough working.
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1.2 Fill In the Blank: “Functor? !”

Definition
Let C and D be categories. A functor F : C → D is a mapping F : ob C → obD and F : mor C →
morD such that:

• for each A,B ∈ ob C and f ∈ homC(A,B), we have Ff ∈ homD(FA,FB);

• F (idA) = idFA for all A ∈ ob C;

• F (gf) = (Fg)(Ff) for any two morphisms A
f−→ B

g−→ C in C.

We sometimes write a functor F : C → D as C F−→ D. For functors C F−→ D G−→ E , we define

the composition of functors C GF−−→ E as follows:

• (GF )A := G(FA) for all A ∈ ob C;

• (GF )f := G(Ff) for all f ∈ mor C.

Note that GF : C → E is necessarily also a functor if F : C → D and G : D → E are both
functors. We write idC for the identity functor on a category C.

Definition

Let C
F−→−→
G

D be functors. A natural transformation η : F → G is a mapping η : ob C → morD
such that

• for any A ∈ ob C, we have a morphism FA
ηA−→ GA;

• for any morphism A
f−→ B in C, the following naturality square

FA FB

GA GB

Ff

ηA ηB

Gf

commutes.

For functors C DG

F

H

and natural transformations α : F → G and β : G → H, we

define the (vertical) composition βα : F → H pointwise as follows: for A ∈ ob C,

(βα)A := βAαA .

For categories C and D, we write [C,D], or DC , for the functor category whose objects are
functors from C to D and whose morphisms are natural transformations between the functors.
Isomorphisms in [C,D] are called natural isomorphisms. If an isomorphism in [C,D] exists, then
we say that C and D are (naturally) isomorphic and we write C ∼= D.

Lemma

Let C
F−→−→
G

D be functors, and let η : F → G be a natural transformation. Then η is a natural

isomorphism if and only if for all A ∈ ob C, the morphism FA
ηA−→ GA is an isomorphism in

D.

Proof. Every baby automatically knows the following three things from the moment they draw
their first breath: how to cry; O. J. Simpson did it; and that natural isomorphisms are precisely
natural transformations which are pointwise isomorphisms.
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1.3 A Gun Hangs on the Wall

Being isomorphic, as categories, is quite a strong condition. There is a weaker notion of two
categories being “the same”.

Definition

We say that categories C and D are equivalent, and write C ≃ D, if there exist functors C
F−→←−
G

D
and there exist natural isomorphisms η : idC → GF and ε : FG → idD.

For brevity, if functors C
F−→←−
G

D witness an equivalence of categories, then we often simply say

that the functor F is an equivalence of categories.
For now, it may seem strange that one of the natural isomorphisms above points away from

an identity functor and that the other points to an identity functor. Because we require that η
and ε above are natural isomorphisms, it does not really matter which way the arrows point.
Just go with the definition as is; we will come back to it.

Clearly, if categories C and D are isomorphic, then they are equivalent. The converse is not
true. The following two categories are equivalent but not isomorphic:

• the category fdVectK whose objects are finite-dimensional vector spaces over a field K
and whose morphisms are linear maps between vector spaces;

• the category MatK whose objects are the vector spaces Kn, for each n ∈ N, and whose
morphisms from Km to Kn are (m× n)-matrices1 with entries in the field K.

Definition
A functor F : C → D is said to be:

• faithful if for all A,B ∈ ob C and all f, g ∈ homC(A,B),

if Ff = Fg then f = g ;

• full if for all A,B ∈ ob C,

for all g ∈ homD(FA,FB), there exists f ∈ homC(A,B) such that Ff = g ;

• essentially injective if for all A,B ∈ ob C,

if FA ∼= FB in D, then A ∼= B in C ;

• essentially surjective if

for all B ∈ obD there exists A ∈ ob C such that FA ∼= B in D .

We will show that a functor F : C → D witnesses an equivalence between the categories C
and D if and only if F satisfies all the four properties above. But first, one of these properties
is redundant for this characterisation of equivalence of categories. Observe that for any functor
F : C → D, the following two properties hold:

• if f ∈ mor C is an isomorphism, then Ff is also an isomorphism;

• if A,B ∈ ob C are such that A ∼= B in C, then FA ∼= FB in D.

1For those who have not done linear algebra in a while, an (m × n)-matrix is a matrix with m rows and n
columns.
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Full and faithful functors satisfy the converse of the two properties above: if F : C → D is a full
and faithful functor, then:

• F reflects isomorphisms, i.e. for all f ∈ mor C , if Ff is an isomorphism, then f is an
isomorphism;

• F creates isomorphisms, i.e. for all A,B ∈ ob C, if FA ∼= FB in D, then A ∼= B in C.

A functor creating isomorphisms is just another name for that functor being essentially injective.

Theorem
Let F : C → D be a functor. Then F is an equivalence of categories if and only if F is full,
faithful, and essentially surjective.

Proof. For the forward direction, suppose that we have functors C
F−→←−
G

D and natural isomorphisms

η : 1C → GF and ε : FG → 1D.

• For essential surjectivity, for all B ∈ obD the isomorphism FGB
εB−→∼= B witnesses the fact

that F is essentially surjective.

• For faithfulness, if A
f−→−→
g

B are morphisms in C satisfying Ff = Fg, then the diagrams

A B

GFA GFB

f

g
αA

GFf=GFg

α−1
B

commute, by the naturality of α. This means f = g. Notice that a similar argument using
FG and β implies that G is also faithful.

• For fullness, given a morphism FA
g−→ FB in D, the diagrams

A B

GFA GFB

f :=α−1
B (Gg)αA

α−1
B

αA
Gg

GFf

commute by the definition of f and the by naturality of α. Therefore GFf = Gg. Now,
by the faithfulness of G, we get Ff = g.

For the converse, define ε and G : obD → ob C together as follows: for each B ∈ obD,
choose GB ∈ ob C to be such that there is an isomorphism FGB

εB−→∼= B in D. For a morphism
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B
g−→ C in D, define Gg to be the unique morphism in homC(GB,GC) such that:

GB FGB

B

C

GC FGC

Gg

∼=εB

g
F

∼=ε−1
C

Finally for A ∈ ob C, define A
ηA−→ GFA to be the unique morphism in homC(A,GFA) such

that:
A FA

GFA FGFA

ηA ε−1
FA

F

Then F,G, η, ε witness the equivalence of the categories C and D.

Curiously, the functors F and G and the natural isomorphisms η and ε obtained from the
converse of the theorem above make the following triangles

F FGF G GFG

F G

Fη

idF
εF

ηG

idG
Gε

living in [C,D] and [D, C] respectively commute. More specifically, we mean that for any A ∈ ob C
and any B ∈ obD, the following triangles

FA FGFA GB GFGB

FA GB

FηA

idFA

εFA

ηGB

idGB

GεB

living in D and C respectively commute. The first triangle, in D, commutes by taking the image
of the commuting square

A A

GFA GFA

idA

ηA

idGFA

η−1
A
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under the functor F , and observing that Fη−1
A = εFA by definition of ηA. The second triangle,

in C, follows by taking the image of the commuting square

FGB FGB

B B

idFGB

εB

idB

ε−1
B

under the functor G, and observing that the diagram on the right below

GB FGB

B

FGB

GFGFB FGFGB

Gε−1
B

ηGB

εB

ε−1
FGB

ε−1
B

F

ε−1
FGB

commutes by definition of η, ε, and G, so two morphisms in the diagram on the left are equal
by the faithfulness of F .

1.4 Say the Word “Dually” Instead of “Similarly” to Sound Smarter

Given any category C, we can form its opposite category Cop as follows:

• ob Cop := ob C;

• homCop(A,B) := homC(B,A) for any A,B ∈ ob Cop

• for any two morphisms A
f←− B

g←− C in Cop, we define the composition A
fg←− C in Cop to

be the composition A
gf−→ C in C.

Given a functor F : C → D, its opposite functor F op : Cop → Dop is the functor defined

by F opA := FA, for all A ∈ ob Cop = ob C, and F op(A
f−→ B) := F (B

f−→ A), for all f ∈
homCop(A,B) = homC(B,A).

Given two functors C
F−→−→
G

D and a natural transformation η : F → G, we can define the

opposite natural transformation ηop : Gop → F op by ηopA := ηA.
Intuitively, we obtain Cop by “flipping all the arrows” in the category. This gives a certain

duality principle: when we prove that a category C satisfies some categorical proposition P ,
then Cop satisfies the proposition Pdual obtained by flipping all the morphisms which occur in
P . For instance, if we have shown that a functor F : C → D is an equivalence, then the functor
F op : Cop → Dop is also an equivalence.
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1.5 Who’s Making All That Noise? Oh. It’s a Set Theorist Whining.

The use of the word “collection” in the definition of a category may have raised some eyebrows.
You may have many questions. What do we mean by the word “collection” if we do not mean
“set”? What justifies us talking about the category Set of all sets and functions between sets?
Surely that collection is too large for us to assert its existence? Would Bertrand Russell not
have something to say about all this?

We respond with the age-old rebuttal:

Shut up.

But limiting the size of our categories to sets does sometimes have some merit. We say that
a category C is locally small if for any A,B ∈ ob C, the collection homC(A,B) of morphisms
from A to B can actually be encoded as a set in set theory. We say that a category C is small if
both ob C and mor C can be encoded as sets in set theory. We write Cat for the category whose
objects are all small categories, and whose morphisms are functors between small categories.

If C is a locally small category and A ∈ ob C, we can define a functor homC(A,−) : C → Set
as follows:

• we map objects B ∈ ob C to homC(A,B);

• we map morphisms B
f−→ C in C to the function homC(A,B)

f◦−−−→ homC(A,C) sending a

morphism A
g−→ B to the morphism A

fg−→ C.

We can also define the dual functor to the above. For a locally small category C and A ∈ ob C,
the functor homC(−, A) : Cop → Set is defined on objects by B 󰀁→ homC(B,A) for B ∈ ob C and

is defined on morphisms by f 󰀁→
󰀃
homC(cod(f), A)

g 󰀁→gf−−−→ homC(dom(f), A)
󰀄
for f ∈ mor C.

Thus, given a locally small category C, we can study the morphisms out of (or into) objects,
rather than study the objects themselves. This is a powerful change of view: rather than deal
with the actual object A, we instead become interested in how it behaves with respect to other
objects in that category.

It is worth pointing out that one can still talk about the functors homC(A,−) and homC(−, A)
even when C is not locally small, for everything can be translated into elementary terms. These
functors would just not live in the functor category [C,Set]. But we can still talk about natural
transformations between these functors. Restricting to the case when C is locally small is simply
so we can use desirable properties of sets without worry.

Also note that we will be abusing the axiom of choice. For example, in the first theorem.
We can go further: a category C is said to be skeletal if every isomorphism class in C has only
one object. For instance, fdVectK , for a field K, is not skeletal, but MatK is. In fact, we say
that MatK is the skeleton of fdVectK , meaning that MatK is a skeletal category which is a
full subcategory of fdVectK .
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2 Universal Properties

2.1 The Hardest Trivial Thing in Mathematics

Theorem (The Yoneda Lemma — The Covariant Version)
Let C be a locally small category, let A ∈ ob C, and let F : C → Set be a functor. Then there
exists a bijection

ϕA,F : hom[C,Set]
󰀃
homC(A,−), F

󰀄
→ FA

which is natural in A and F . Naturality here means that when we define the following two
functors from C × [C,Set] to Set:

• we define the functor hom[C,Set]
󰀃
homC(−,−),−

󰀄
: C × [C,Set] → Set by mapping objects

(A,F ) to
hom[C,Set]

󰀃
homC(A,−), F

󰀄
,

and morphisms (A
f−→ A′, F

α−→ F ′) to the function

hom[C,Set]
󰀃
homC(f,−),α

󰀄

which is defined to be the diagonal of the commuting square

hom[C,Set]
󰀃
homC(A,−), F

󰀄
hom[C,Set]

󰀃
homC(A

′,−), F
󰀄

hom[C,Set]
󰀃
homC(A,−), F ′󰀄 hom[C,Set]

󰀃
homC(A

′,−), F ′󰀄

η 󰀁→
󰀓
B 󰀁→

󰀃
h 󰀁→ηB(hf)

󰀄󰀔

η 󰀁→αη η 󰀁→αη

η 󰀁→
󰀓
B 󰀁→

󰀃
h 󰀁→ηB(hf)

󰀄󰀔

• we define the functor −(−) : C × [C,Set] → Set by mapping objects (A,F ) to

FA ,

and morphisms (A
f−→ A′, F

α−→ F ′) to the function

αA′(Ff)

which is the diagonal of the commuting square

FA FA′

F ′A F ′A′

Ff

αA αA′

F ′f

then ϕ is a natural isomorphism from hom[C,Set]
󰀃
homC(−,−),−

󰀄
to −(−).

Proof. Define ϕA,F : hom[C,Set]
󰀃
homC(A,−), F

󰀄
→ FA by

ϕA,F (η) := ηA(idA)

for natural transformations η : homC(A,−) → F .
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The real message of the Yoneda lemma can be captured through its corollaries.

Corollary
Let C be a locally small category. Then the mapping

• A 󰀁→ homC(A,−), for A ∈ ob C,

• f 󰀁→
󰀓
homC(cod(f),−)

C 󰀁→(h 󰀁→hf)−−−−−−−→ homC(dom(f),−)
󰀔
, for f ∈ mor C,

is a full and faithful functor from Cop to [C,Set].

Thus, any locally small category C may be viewed equivalent to a full subcategory of [C,Set].
We call the full and faithful functor from the corollary above (or its dual version below) the
Yoneda embedding(s).

We also have following “famous” corollary of the Yoneda lemma: if we know all the maps
out of a certain object, then that’s as good as knowing the object itself.

Corollary
Let C be a locally small category and let A,B ∈ ob C. Then A ∼= B in C if and only if
homC(A,−) ∼= homC(B,−) in [C,Set].

Dually, we have the following contravariant version of the Yoneda lemma, along with its
corollaries.

Theorem (The Yoneda Lemma — The Contravariant Version)
Let C be a locally small category, let A ∈ ob C, and let F : Cop → Set be a functor. Then there
exists a bijection

ϕA,F : hom[Cop,Set]

󰀃
homC(−, A), F

󰀄
→ FA

which is natural in A and F .

Corollary
Let C be a locally small category. Then the mapping

• A 󰀁→ homC(−, A), for A ∈ ob C,

• f 󰀁→
󰀓
homC(−, dom(f))

C 󰀁→(h 󰀁→fh)−−−−−−−→ homC(−, dom(f))
󰀔
, for f ∈ mor C,

is a full and faithful functor from C to [Cop,Set].

Corollary
Let C be a locally small category and let A,B ∈ ob C. Then A ∼= B in C if and only if
homC(−, A) ∼= homC(−, B) in [Cop,Set].

2.2 The One Thing Category Theory is Good For

Definition
Let C be a locally small category. A functor F : C → Set is representable if there exists A ∈ ob C
such that F ∼= homC(A,−) in [C,Set]. If A ∈ ob C and x ∈ FA are such that:

• F ∼= homC(A,−) in [C,Set]; and

• if η : homC(A,−) → F is the (unique) natural transformation such that ηA(idA) = x, then
η is a natural isomorphism;

then we say the pair (A, x) is a representation of F , that A is a representing object for F , and
that x is a universal element of F .

14



Using the Yoneda embedding we can prove that if (A, x) and (B, y) are two representations
of some functor F : C → Set, where C is a locally small category, then there exists a unique

isomorphism A
f−→∼= B such that (Ff)(x) = y. Thus we can speak of the representation of a

representable functor, and the universal element of a representable functor.
Representations and universal elements are perhaps the single most powerful tool from

category theory. They give us “universal properties”, as we shall see below.
Given a locally small category C and objects A,B ∈ ob C, we can construct the functor

homC(−, A)× homC(−, B) : Cop → Set. If this functor is representable, we denote by A×B its

representing object, and we denote by (A×B
π1−→ A,A×B

π2−→ B) its universal element. Then

for any pair of morphisms C
f−→ A and C

g−→ B in C, there exists a unique morphism C
h−→ A×B

such that f = π1h and g = π2h. Diagrammatically,

C

A×B

A B

f g

∃!

π1 π2

We typically denote the unique induced morphism above by C
(f,g)−−−→ A×B.

The converse also holds: if there is some object A × B and a pair of morphisms A
π1←−

A × B
π2−→ B making the diagram above commute for all pairs of morphisms C

f−→ A and
C

g−→ B, then the functor homC(−, A) × homC(−, B) : Cop → Set is representable with A × B

as its representing object and the pair (A×B
π1−→ A,A×B

π2−→ B) as its universal element. If
it exists, we call A× B the (categorical) product of A and B in C, and we call the morphisms

A
π1←− A× B

π2−→ B (product) projections. Note that the notions of products and projects still
make sense in a category which is not locally small, for we can use the elementary definition as
the diagram above portrays.

Given two morphisms A1
f1−→ B1 and A2

f2−→ B2, if A1×A2 and B1×B2 exist, then we have

a morphism A1 ×A2
f1×f2−−−−→ B1 ×B2 which is the morphism induced in the diagram

A1 ×A2

A1 B1 ×B2 A2

B1 B2

π1 π2∃!

f1 p1 p2
f2

where π1, π2, p1, and p2 are the relevant product projections.
Dually2, we have the notion of a (categorical) coproduct.

Given a locally small category C and a pair of (not necessarily distinct) morphisms A
f−→−→
g

B

in C, we can define the functor Ef,g : Cop → C as follows:

2For completeness, here is the full definition. Given a locally small category C and objects A,B ∈ ob C,
if the functor homC(A,−) × homC(B,−) : C → Set is representable, then its representing object is called the

(categorical) coproduct of A and B, denoted by A+B, and the pairs of morphisms A
i1−→ A+B

i2←− B appearing
in the universal element are called coprojections.
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• Ef,g(X) := {h ∈ homC(C,A) : fh = gh }, for X ∈ ob C;

• Ef,g(h) :=
󰀃
Ef,g(Y )

k 󰀁→hk−−−−→ Ef,g(X)
󰀄
for morphisms X

h−→ Y in C.

If this functor Ef,g is representable, then its representing object E and its universal element

E
e−→ A make the all subdiagrams in the diagram

E A B

X

e
f

g

h
∃!

commute for any X ∈ ob C and any h ∈ Ef,g(X). In this case, we call the morphism E
e−→ A

the equaliser of f and g. The notion of equalisers still makes perfect sense even if we are not in
a locally small category. As with products, we can still make sense of the notion of an equaliser
even if the ambient category is not locally small, by translating it into its elementary definition
using the diagram above. Also, if the category is locally small and the pair of morphisms
f, g have an equaliser in the sense of the elementary definition, then the functor Ef,g will be
representable with the equaliser of f and g as its universal element.

Observe that equalisers are necessarily monomorphisms. The converse is not true; this occurs
in, for example, the category Top. If a monomorphism does in fact occur as an equaliser, we
call it a regular monomorphism.

Dually3, we have the notions of coequalisers and regular epimorphisms.
Given a category C which has products and equalisers, a pullback of a pair of (not necessarily

distinct) morphisms forming a cospan

A

B C

f

g

in C is an equaliser of the pair of morphisms A × B
fπ1−−→−−→
gπ2

C, where A
π1←− A × B

π2−→ B are the

projection morphisms from the product A×B. The pullback P
e−→ A×B makes all subdiagrams

in the diagram

X

P A

B C

h

k

∃!

π1e

π2e f

g

commute for any pair of morphisms B
k←− X

h−→ A in C satisfying fh = gk. We typically refer to
the morphisms B

π2e←−− P
π1e−−→ A by simply B

p2←− P
p1−→ A, and call B

p2←− P
p1−→ A the pullback.

3For completeness, here are the full definitions in elementary terms. Given a pair of morphisms A
f−→−→
g
B in a

category C, a coequaliser for f and g is a morphism B
e−→ E in C such that ef = eg, and that for any other

morphism B
h−→ X in C satisfying hf = hg there exists a unique morphism E

k−→ X such that ke = h. A regular
epimorphism is an epimorphism which occurs as a coequaliser of some parallel pair of morphisms.
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Dually4, we have the notion of a pushout.
Again, fix a locally small category C. Define the functor I : C → Set as follows:

• on objects, I(A) := {•} for all A ∈ ob C, where {•} denotes any fixed singleton set;

• on morphisms, I(f) := id{•} for all f ∈ mor C.

If this functor I : C → Set is representable, then letting ∅ ∈ ob C be its representing object, we
have that | homC(∅, A)| = 1 for all A ∈ ob C. In this case, we call ∅ the initial object in C.

Dually5, we have the notion of a terminal object.
All these notions satisfy a certain “universal property” which gives rise to a unique factorisa-

tion for any other object making the same commutative diagram. In a sense, objects satisfying
these universal properties can be thought of as being the “best” object with a certain desired
commuting property.

2.3 Family Separation Leaves an Impact

The Yoneda lemma (or more precisely, its corollary) essentially says that for a locally small
category C, if we know all the functors {homC(A,−)}A∈ob C then we know all there is to know
about C. But sometimes, we do not need to know all the functors homC(A,−), but only some
of them.

Definition
Let C be a locally small category and let G ⊆ ob C. We say that:

• G is a separating/generating family of objects if the family of functors {homC(G,−)}G∈G

are collectively faithful, meaning that if morphisms A
f−→−→
g

B in C satisfy homC(G, f) =

homC(G, g) for all G ∈ G then f = g;

• G is a detecting family of objects if the family of functors {homC(G,−)}G∈G collectively

reflect isomorphisms, meaning that if a morphism A
f−→ B in C is such that homC(G, f) is

an isomorphism in Set for all G ∈ G then f is also an isomorphism.

If the collection G above is a singleton, then we use the terms separator and detector in
place of “separating family” and “detecting family” respectively.

These two definitions are not equivalent, but they are very closely related to each other. Fix

a locally small category C. If any two parallel pair of morphisms A
f−→−→
g

B in C has an equaliser,

then any detecting family in C is also separating. If, instead, C is balanced (i.e. all morphisms
in C which are both monic and epic are also isomorphisms), then any separating family is also
detecting.

Dually6, we have the notions of a coseparating and codetecting family of objects in a locally
small category. The notion of a coseparating family of objects will come in handy later in the
special adjoint functor theorem.

4For completeness, here is the full definition in elementary terms. Given a span B
f←− A

g−→ C in a category

C, a pushout of f and g is a pair of morphisms B
p1−→ P

p2←− C such that p1f = p2g, and for any other pair of

morphisms B
h−→ X

k←− C satisfying hf = kg, there exists a unique morphism P
m−→ X such that mp1 = h and

mp2 = k.
5For completeness, here is the full definition in elementary terms. A terminal object in a category C is an

object 1 such that for any A ∈ ob C there exists a unique morphism A → 1 in C.
6For completeness, here are the full definitions. Let C be a locally small category and let G ⊆ ob C. We say

that G is a coseparating family if the family of functors {homC(−, G)}G∈G are collectively faithful. We say that
G is a codetecting family if the family of functors {homC(−, G)}G∈G collectively reflect isomorphisms.
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3 Limits

3.1 Hang On. There’s a Formal Definition of the Word “Diagram”?

Definition
Let C and J be categories. A diagram of shape J in C is a functor D : J → C. The objects
{D(j)}j∈ob J are called the vertices of the diagram D, and the morphisms {D(f)}f∈mor J are
called the edges of the diagram D.

3.2 A Cocone Is a Ne

Let D : J → C be a diagram. A cone over D consists of the following data:

• an apex A ∈ ob C;

• a collection of legs

󰀝
A

λj−→ D(j)

󰀞

j∈ob J

⊆ mor C which are compatible with the edges of

D, i.e. the diagram

A

D(j) D(k)

λj λk

D(e)

commutes for all morphisms j
e−→ k in J .

Given a diagram D : J → C, we can form the category Cone(D) whose objects are cones over

D and whose morphisms (A, {λj}j∈ob J)
f−→ (B, {µj}j∈ob J) are morphisms A

f−→ B in C making
the diagram

A B

D(j)

λj

f

µj

commute for all j ∈ ob J .
Dually7, we have the notion of cocones8 and the category Cocone(D) of a diagramD : J → C.

Definition
A (categorical) limit for a diagram D : J → C is a terminal object in the category Cone(D). A
(categorical) colimit for a diagram D : J → C is an initial object in the category Cocone(D).

7For completeness, here are the full definitions. Fix a diagram D : J → C. A cocone under D consists of the
following data:

• a nadir N ∈ ob C;

• a collection of legs

󰀝
D(j)

λj−→ N

󰀞

j∈ob J

⊆ mor C such that λj = λkD(e) for all morphisms j
e−→ k in J .

The category Cocone(D) is then the category whose objects are cocones under D, and whose morphisms

(A, {λj}j∈ob J)
f−→ (B, {µj}j∈ob J) are morphisms A

f−→ B in C such that µj = fλj for all j ∈ ob J .
8Some people use the term cone under D to refer to cocones under a diagram D : J → C. Personally, I don’t

like this, as the two distinct concepts would only be differentiated from insignificant-sounding words such as
“over” and “under”. I would much rather deal with the silliness of the name “cocone”.
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Limits and colimits, if they exist, are unique up to isomorphism. Thus we may speak of the
limit and the colimit of a diagram, if they exist.

Using limits and colimits, we can generalise the notions of categorical products and coprod-
ucts from before. If J is a (small) discrete category, i.e. the only morphisms in J are the identity
morphisms, and D : J → C is a diagram, then we define the (categorical) product

󰁔
j∈ob J D(j)

to be the limit of D, if it exists. Dually, the (categorical) coproduct
󰁓

j∈ob J D(j) is defined to
be the colimit of D. In the case where J is a discrete category with two objects, these notions
coincide with products and coproducts from before: a (binary) coproduct is a limit of a diagram
of the shape

• •

whereas a coproduct is a colimit of a diagram of the above shape. In fact, we can recast
equalisers, coequalisers, pullbacks, and pushouts all as limits or colimits of certain diagrams.
Equalisers are limits of diagrams of the shape

• •

and coequalisers are colimits of a diagram of the above shape. Pullbacks are limits of diagrams
of the shape

•

• •

and pushouts are colimits of diagrams of the shape

• •

•

Let us see some interplay between limits and some universal properties. To reduce the word
count in the results that follow, we say that:

• a category C has (co)equalisers if any two morphisms A
f−→−→
g

B have an (co)equaliser;

• a category C has pullbacks (resp. pushouts) if any two morphisms A
f−→ C

g←− B (resp.

B
f←− A

g−→ C) has a pullback (resp. pushout);

• a category C has all (co)products of shape J , where J is a category, if any diagram
D : J → C has a (co)product;

• a category C has all (co)limits of shape J , where J is a category, if any diagram D : J → C
has a (co)limit.

We say that a category has all small (co)limits if it has (co)limits of shape J for all small
categories J . The notion of a category having all finite (co)limits is defined similarly, where
a finite category is a category J where ob J and mor J are both finite. Similarly we have the
notion of a category having all finite (co)products and having all small (co)products.

Lemma
Let C be a category. Then C has all finite limits if and only if C has equalisers and all finite
products.
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Proof. The forward direction simply follows from equalisers and products being able to be
reformulated as limits. So we only need to prove the converse.

But instead of providing a proof, we will instead give an easily generalisable example with

the diagram A
ε−→ B (with the identity morphisms) in C. Let A×B

f−→−→
g

A×B×B be the induced

morphisms as below, using the universal property of products

E A×B A B B A×B ×B

A B

e

πA

πB

πB

πA

f

g

πB

pA

pB

pB

idA ε
idB

and let E
e−→ A×B be the equaliser of f and g. Then (E, {πAe,πBe}) is a cone over the diagram

A
ε−→ B. But any other cone over A

ε−→ B is also, in particular, a cone over the discrete diagram

A B

and so it factors uniquely through A×B, whence it factors uniquely through E
e−→ A×B.

The general proof goes as follows:

lim
J

D ∼= eq
󰀓 󰁔

j∈ob J D(j)
󰁔

(j→k)∈mor J D(k)
󰀔
.

We remark that the lemma above carries through, with the same proof strategy, if we replace
all instances of “finite” with “small”.

Dually, if a category has coequalisers and finite (resp. small) coproducts, then it also has
finite (resp. small) colimits.

If a category C has pullbacks and a terminal object 1, then C would have equalisers and
finite products, and so C would have finite limits. Indeed, given any A,B ∈ C, the pullback of
the cospan

A

B 1

is simply the product A × B. So we can inductively construct finite products in C using

pullbacks. Then given any two morphisms A
f−→−→
g

B in C, the equaliser of f and g can be obtained

by considering the pullback of the cospan

A

A A×B

(idA,f)

(idA,g)
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3.3 Continuity. Well... Not Quite. Eh.

Though categorical limits are rather far removed from limits in topology, lots of terminology
was taken from there.

Definition
A category is (co)complete if it has all small (co)limits.

We can play around with limits and functors and arrive at three different definitions for
how functors treat limits. A warning: the definition below for “creates limits” is slightly non-
standard.

Definition
Let F : C → D be a functor. Let J be a category, and suppose that both C and D have limits of
shape J . We say that:

• F preserves limits of shape J if for all diagrams D : J → C and all limits (L, {λj}j∈ob J)
for D in C, the pair (FL, {Fλj}j∈ob J) is a limit for the diagram FD : J → D;

• F reflects limits of shape J if for all diagrams D : J → C and all cones (L, {λj}j∈ob J)
over D, if (FL, {Fλj}j∈ob J) is a limit for the diagram FD then (L, {λj}j∈ob J) is a limit
for D;

• F creates limits of shape J if for all diagrams D : J → C and all limits (M, {µj}j∈ob J)
for the diagram FD, there exists a cone (L, {λj}j∈ob J) for D such that

(FL, {Fλj}j∈ob J) ∼= (M, {µj}j∈ob J) in Cone(FD) ,

and that any such cone (L, {λj}j∈ob J) is a limit for D.

We say that F is (co)continuous if F preserves all small (co)limits.

In general, when we say a functor F : C → D “preserves items with a property ϕ”, we mean
that if x ∈ C (that is, x could be an object or a morphism) is such that x satisfies ϕ, then Fx
also satisfies ϕ. Similarly, when we say “F reflects items with property ϕ”, we mean that if
x ∈ C is such that Fx satisfies ϕ, then x itself also satisfies ϕ. And we say that “F creates items
with property ϕ” to mean that if y ∈ D has property ϕ then there is some x ∈ C with property
ϕ such that Fx ∼= y.

Observe that the creation of limits of shape J is equivalent to the preservation and reflection
of limits of shape J .

We have the following interplay between limits of categories between functors.

Proposition
Suppose that categories C and D have equalisers and all finite products, and let F : C → D be a
functor. If F preserves equalisers and all finite products, then F preserves all finite limits.

Proof. We know already know that C and D will have all finite limits. But also, for any limit L
of a finite diagram D : J → C, we can construct an isomorphic copy of L in C as an equaliser of a
pair morphisms from a product to a product. Taking the image of this under F , by assumption,
also yields an equaliser of the appropriate products, and so we get a limit for FD.

Rather similarly, if we replace all instances of the word “preserves” with “creates”, then the
result still holds. And again, both results (the preservation result and the creation result) carry
through if we replace all instances of “finite” with “small”.
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3.4 #NoFilter

Definition
A category C is a filtered category if all of the following three properties hold:

• ob C is non-empty;

• for any A,B ∈ ob C, there exist C ∈ ob C and morphisms

A

B C

forming a cospan;

• for any parallel pair of morphisms A
f−→−→
g

B in C, there exist C ∈ ob C and a morphism

B
h−→ C such that hf = hg.

Evidently, a category having all finite colimits implies that it is filtered. But the converse
need not hold.

An equivalent characterisation for filtered categories is that a category C is filtered if and
only if every finite diagram in C has a cocone under it. This is clearly a sufficient requirement
for C to be filtered, since all each of the three properties in the definition of a filtered category
are instances of cocones under finite diagrams (with the non-empty condition be satisfied by
considering a cocone under the empty diagram). To see that a filtered category C always has
cocones under finite diagrams, inductively construct a cocone on the vertices and edges of a
finite diagram using the cospan and equalisers available in C.

Dually9, we have the notion of a cofiltered category.
A category C is a preorder if for all A,B ∈ ob C, the collection homC(A,B) is either empty

or a singleton set. A filtered preorder is often called a directed preorder.

Definition
Let C be a category. We say that:

• C has filtered colimits if C has colimits of shape J for every small filtered category J ;

• C has directed colimits if C has colimits of shape J for every small directed preorder J .

Proposition
Let C be a category, and assume that C has all finite colimits and has directed colimits. Then C
has all small colimits (i.e. C is cocomplete).

Proof. By assumption, C has coequalisers (because coequalisers can be recast as finite colimits).
So we just need to show that C has all small coproducts to conclude that C has all small colimits.

We can form finite coproducts since C has finite colimits (because coproducts can be recast
as colimits). Now given a small diagram in C, create a directed preorder diagram of all the
finite coproducts of that diagram, ordered in the obvious way (think inclusion). Then take the
colimit of this directed preorder to obtain the coproduct.

Let I and J be small categories, and let C be a category which has all limits of shape I and
has all colimits of shape J . Given a diagram D : I × J → C, there is a canonical morphism

colim
J

lim
I

D −→ lim
I

colim
J

D

9For completeness, here is the full definition. A category C is said to be cofiltered if Cop is filtered. In other
words, C is cofiltered if and only if for every finite diagram in C has a cone over it.
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in C. For example, if D : I × J is of the form

D(i, j′) D(i′, j′)

D(i, j) D(i′, j)

then the canonical morphism colimJ limI D −→ limI colimJ D is the morphism induced in the
diagram below:

limI

󰀃
D(−, j′)

󰀄

D(i, j′) D(i′, j′) limI

󰀃
D(−, j)

󰀄

D(i, j) D(i′, j)

limI colimJ D colimJ limI D

colimJ

󰀃
D(i,−)

󰀄
colimJ

󰀃
D(i′,−)

󰀄

If for all diagrams D : I × J → C the induced morphism colimJ limI D −→ limI colimJ D is
an isomorphism in C, then we say that limits of shape I commute with colimits of shape J in
C. Equivalently, this is saying that the functor limI : [I, C] → C preserves colimits of shape J .
Another equivalent formulation is that the functor colimJ : [J, C] → C preserves limits of shape
I.

What are limits and colimits in the category Set? The apex of the limit of a small diagram
D : J → Set is (isomorphic to) the largest subset of the

󰁔
j∈ob J D(j) which forms a cone over

the diagram D using the restricted projection maps as legs. The nadir of the colimit of a small
diagram D : J → Set is (isomorphic to) the set

󰀃󰁉
j∈ob J D(j)

󰀄
/ ∼ where ∼ is the smallest

equivalence relation identifying x ∈ D(j) with y ∈ D(k) if there is a morphism j
e−→ k in J such

that (De)(x) = y.

Theorem
Let J be a small category. Then J is filtered if and only if all finite limits commute with colimits
of shape J in Set.

Proof. The forward direction asserts that the induced functions are bijections. Just do it. The
function sends an equivalence class [(x1, . . . , xn)] ∈ colimJ limI D to the tuple of equivalence
classes ([x1], . . . , [xn]) ∈ limI colimJ D. It may be helpful to know that, because J is filtered, if
D : J → Set is a diagram then for j, k ∈ ob J , and x ∈ D(j) and y ∈ D(k), we have that x and

y lie in the same equivalence class in colimJ D if and only if there exists a cospan

j

k l

f

g

in J satisfying (Df)(x) = (Dg)(y).
For the reverse direction, let I be a finite category and let D : I → J be a diagram. Define

a diagram E : Iop × J → Set as follows:

• on objects, E(i, j) := homJ(D(i), j);

• on morphisms, E(i
e←− i′, j

f−→ j′) is defined to be the function

homJ(D(i), j)
f◦−◦D(e)−−−−−−→ homJ(D(i′), j′) .
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For any i ∈ ob I, the (nadir of the) colimit of the diagram E(i,−) : J → Set is a singleton set

since, in the colimit, any morphism D(i)
f−→ j in J is identified with the identity morphism

D(i) idD(i) in J . Indeed,

homJ(D(i), D(i)) homJ(D(i), j)

idD(i) f

f◦−◦D(idi)

Hence (the apex of) limIop colimJ E is also a singleton. Thus, by assumption, colimJ limIop E
is a singleton. In particular, it is non-empty. So limIop E(−, j) is non-empty for some j ∈ ob J .
An element of limIop E(−, j) is simply the collection of legs of a cocone under D with nadir j.
Hence J is filtered.

We will now make a temporary definition, which we will generalise in the next section on
adjunctions, but is sufficient for the sake of the next proposition. Let 1 = {∗} ∈ obSet be a
singleton set. Let C be a category and let F : C → Set be a functor. Define the category of
elements of F , denoted (1 ↓ F ), as follows:

• its objects are pairs (A, x) with A ∈ ob C and x ∈ FA;

• its morphisms (A, x)
f−→ (B, y) are morphisms f ∈ homC(A,B) such that (Ff)(x) = y;

• composition in (1 ↓ F ) is composition in C.
Proposition
Let C be a small category which has all finite limits, and let F : C → Set be a functor. Then F
preserves all finite limits if and only if the category (1 ↓ F ) is cofiltered.

Proof. We start with the forward direction. Denote by U : (1 ↓ F ) → C the forgetful functor,
which sends (A, x) ∈ ob(1 ↓ F ) to A ∈ ob C and sends f ∈ mor(1 ↓ F ) to f ∈ mor C. Suppose
we have a finite category J and a diagram D : J → (1 ↓ F ), and let (L, {λj}j∈ob J) be the limit
cone over UD : J → C. We have two ways of getting a cone over the diagram FUD : J → Set.

• Since F preserves limits, (FL, {Fλj}j∈ob j) is a limit cone over FUD.

• Writing the vertices of the diagram D : J → (1 ↓ F ) as {(Aj , xj)}j∈ob J , then (1, {1
∗󰀁→xj−−−→

Aj}j∈ob J) is a cone over the diagram FUD : J → Set.

So we get an induced function h : 1 → FL. In particular, FL is non-empty; it has an element
h(∗). Then

󰀃
(L, h(∗)), {λj}j∈ob J

󰀄
is a (limit) cone over D : J → (1 ↓ F ). Hence (1 ↓ F ) is

cofiltered.
Now for the reverse direction. Suppose that every finite diagram in (1 ↓ F ) has a cone over

it. Let D : J → C be a finite diagram with a limit cone (L, {λj}j∈ob J), and let (M, {µj}j∈ob J)
be a limit cone over FD : J → Set. This gives us an induced function f : FL → M . Now for
any element x ∈ M , define a diagram Dx : J → (1 ↓ F ) by:

• Dxj := (Dj, µj(x)), for j ∈ ob J ;

• Dxe := De, for e ∈ mor J .

Then, by assumption, the diagram Dx has some cone ((K, y), {κj}j∈ob J) over it. Now observe

that (K, {κj}j∈ob J) is a cone over D : J → C, so we get an induced morphism K
k−→ L in C, and

we define f−1(x) := (Fk)(y). Then the function f−1 : M → FL is the inverse to f : FL → M
in Set.
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4 Adjunctions

4.1 Say the Words “Left Adjoint” to Lose Half the People in the Room

Definition

Let C and D be categories, and let C
F−→←−
G

D be functors. We say that F is left adjoint to G, and

that G is right adjoint to F , and write F ⊣ G, if there exists a bijection

ϕA,B : homC(A,GB) → homD(FA,B)

which is natural in A and B, for any A ∈ ob C and B ∈ obD.

Naturality here means that the square

homC(A,GB) homD(FA,B)

homC(A
′, GB′) homD(FA′, B′)

ϕA,B

∼=

Gg◦−◦f g◦−◦Ff

ϕA′,B′

∼=

commutes for any morphisms A
f←− A′ in C and B

g−→ B′ in D.
In other words, we have that F ⊣ G if and only if the functor homC(−, G−) is naturally

isomorphic to the functor homD(F−,−).

4.2 ... and the Words “Right Adjoint” to Lose the Other Half

The first two propositions below establish the uniqueness of adjoint functors up to natural
isomorphism.

Lemma

Let C D
F

F ′

G

be functors with F ⊣ G and F ∼= F ′ in [C,D]. Then F ′ ⊣ G.

Proof. For A ∈ ob C and B ∈ obD, we have natural bijections

homC(A,GB)
F⊣G−−−→∼= homD(FA,B)

F∼=F ′
−−−→∼=

homD(F
′A,B) .

Similarly, if C D
F

G

G′

are functors with F ⊣ G and G ∼= G′ in [D, C], then F ⊣ G′. The

converse to the previous lemma is also true.

Lemma

Let C D
F

F ′

G

be functors with F ⊣ G and F ′ ⊣ G. Then F ∼= F ′ in [C,D].

Proof. For each A ∈ ob C, let FA
θA−→ F ′A be the morphism obtained as follows:

homD(F
′A,F ′A) homC(A,GF ′A) homD(FA,F ′A)

idF ′A θA

F ′⊣G
∼=

F⊣G
∼=

Then θ : F → F ′ is a natural isomorphism.
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Similarly, if C D
F

G

G′

are functors with F ⊣ G and F ⊣ G′, then G ∼= G′ in [D, C].

The previous two lemmas allow us to talk about the left adjoint functor and the right adjoint
functor, if they exist.

Next, adjunctions can be composed.

Lemma

Suppose we have adjoint functors C D E⊥
F

G

H

⊥
K

. Then HF ⊣ GK.

Proof. For A ∈ ob C and B ∈ ob E , we have

homC(A,GKB)
F⊣G∼= homD(FA,KB)

H⊣K∼= homE(HFA,B) .

The previous two propositions give rise to the following: given a commutative square of
categories and functors

B C

D E

F

G H

K

all of whom have left adjoints F ′ ⊣ F, . . . , K ′ ⊣ K, then the square

B C

D E

F ′

G′ H′

K′

commutes up to natural isomorphism, i.e. F ′H ′ ∼= G′K ′ in [E ,B].

4.3 Are Adjoint Linear Operators Examples of Adjoint Functors?

No.

4.4 How Many Definitions Can One Concept Have?

There is a very common equivalent definition for functors C
F−→←−
G

D to form an adjunction with

F ⊣ G.

Theorem

Let C
F−→←−
G

D be functors. Then F ⊣ G if and only if there exist natural transformations η : idC →
GF , called the unit of the adjunction, and ε : FG → idD, called the counit of the adjunction,
such that the diagrams

F FGF G GFG

F G

idF

Fη

εF
idG

ηG

Gε

in [C,D] and [D, C] respectively commute. The two commutative diagrams above are called the
triangular identities for η and ε.
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Proof. For the forward direction, we define the unit η : idC → GF as follows: for A ∈ ob C

homC(A,GFA) homD(FA,FA)

ηA idFA

∼=

And we define the counit ε : FG → idD as follows: for B ∈ obD,

homC(GB,GB) homD(FGB,B)

idGB εB

∼=

For the converse direction, for A ∈ ob C and B ∈ obD, the assignments

homC(A,GB) homD(FA,B)

f εB(Ff)

(Gg)ηA g

∼=

are the desired natural bijections for the adjunction.

Sometimes, when we are given a functor C ←−
G

D and we want to show that G has a left

adjoint functor F : C → D, it may be annoying to actually construct such an F .

Definition
Let C ←−

G
D be a functor, and let A ∈ ob C. We define the category (A ↓ G) to be the category

whose:

• objects are pairs (B, f) with B ∈ obD and f ∈ homC(A,GB);

• morphisms (B, f)
g→ (B′, f ′) are morphisms g ∈ homD(B,B′) such that the diagram

A GB

GB′

f

f ′ Gg

in C commutes;

• composition in (A ↓ G) is composition in D.

Dually10, given a functor C F−→ D and an object B ∈ obD, we have the category (F ↓ B).

Lemma

Let C D⊥
F

G

be adjoint functors. Then for each A ∈ ob C, the category (A ↓ G) has an

initial object.
10For completeness, here is the full definition. Given a functor F : C → D and an object B ∈ obD, we define

the category (F ↓ B) to be the category whose objects are pairs (A, g) with A ∈ ob C and g ∈ homD(FA,B),

and whose morphisms (A, g)
f−→ (A′, g′) are morphisms f ∈ homC(A,A′) such that g = g′(Ff).
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Proof. Let η : idC → GF be the unit of the adjunction. Fix A ∈ ob C. Obtain the morphism
A

ηA−→ GFA. Explicitly,

homC(A,GFA) homD(FA,FA)

ηA idFA

∼=

Then (FA, ηA) is initial in the category (A ↓ G).

Lemma
Let C ←−

G
D be a functor such that, for all A ∈ ob C, the category (A ↓ G) has an initial object.

Define a functor F : C → D as follows:

• on objects, FA is such that (FA, ηA) is initial in (A ↓ G), for some morphism A
ηA−→ GFA;

• on morphisms, F (A
f−→ A′) is the unique morphism in D giving rise to the morphism

(FA, ηA)
Ff−−→ (FA′, ηA′) in (A ↓ G), i.e. the one making the diagram

A GFA

GFA′

ηA

ηA′
GFf

in C commute.

Then F ⊣ G.

Proof. For A ∈ ob C and B ∈ obD, the assignment

homC(A,GB) homD(FA,B)

(Gg)ηA g

∼=

is the desired natural bijection for the adjunction, where η is now the unit of the adjunction.

The previous two lemmas give us the following characterisation of right adjoints.

Theorem
Let C ←−

G
D be a functor. Then G is a right adjoint if and only if there exists an initial object

in the category (A ↓ G) for all A ∈ ob C.

Dually, a functor C F−→ D is a left adjoint if and only if there exists a terminal object in the
category (F ↓ B) for all B ∈ obD.

4.5 Chekhov’s Gun Goes Off

Recall the quirk in the definition of equivalence of categories, where the natural isomorphisms
appear to pointlessly point in opposite directions? Every equivalence of categories is actually
an adjoint equivalence!

Proposition

Let C
F−→←−
G

D be functors witnessing an equivalence of categories. Then F ⊣ G ⊣ F .
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Proof. Rerun the argument that if F and G are full, faithful, and essentially surjective, then we
have an equivalence of categories. The obtained natural isomorphisms from that proof satisfy
the triangular identities.

Alternative Proof. Let α : idC → GF and β : FG → idD be natural isomorphisms. Noting that
the squares

idC GF idD FG

GF GFGF FG FGFG

α

α αGF

β

GFα

β βFG

FGβ

commute by the naturality of α and β, we define η := α and define ε : FG → idD to be the
composite

FG FGFG FG idD .
(FGβ)−1

ε

(FαG)−1 β

Then η and ε satisfy the triangular identities to establish F ⊣ G, and ε−1 and η−1 satisfy the
triangular identities to establish G ⊣ F .

4.6 Know Your Limits

For categories C and J , let ∆ : C → [J, C] be the functor which:

• sends objects A ∈ ob C to the constant diagram, all of whose vertices are A and edges are
idA;

• sends morphisms A
f−→ B in C to the natural transformation from ∆A to ∆B which sends

objects j ∈ ob J to the morphism (∆A)j = A
f−→ B = (∆B)j.

Then for a diagram D : J → C, specifying the legs of a cone (A, {λj}j∈ob J) over D is equivalent
to specifying a natural transformation from ∆A to D. If one stares at the definitions carefully,
they will notice that Cone(D) is just another name for (∆ ↓ D). Consequently, ∆ is a left
adjoint if and only if all diagrams of shape J in C has a limit. Dually, ∆ is a right adjoint if
and only if all diagrams of shape J in C has a colimit.

A category C is said to be cartesian closed if both of the following hold:

• all binary products exist in C;

• the functor (−)×A : C → C is a left adjoint, for all A ∈ ob C.

Let us spell out this functor (−) × A. As the notation suggests, on objects, it sends B ∈ ob C
to B ×A. Morphisms B

f−→ C in C are sent to the unique morphism induced as follows

B ×A C ×A

B C A

∃!

πB
πA

pC pA

f

using the universal property of the product.
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In a cartesian closed category C, and for A ∈ ob C, we denote the right adjoint of the functor
−×A : C → C by (−)A : C → C.

The categories Set and Cat are examples of cartesian closed categories. For A,B ∈ obSet,
we can take BA := homSet(A,B). For C,D ∈ obCat, we can take DC := [C,D].

Proposition
Let C, D, and J be categories, and suppose that D has all limits of shape J . Then the functor
category [C,D] also has all limits of shape J .

Proof. For a diagram D : J → [C,D], we may regard D as a functor D : J × C → D by the
adjunction bijection above (which still makes sense even if our categories are not small). Define
a functor L : C → D as follows:

• LA is the limit of the diagram D(−, A) : J → D, for A ∈ ob C;

• for a morphism A
f−→ B in C, we define Lf to be the unique morphism induced which

makes the diagram below

LA LB

D(j, A) D(j, B)

Lf

λj,A λj,B

D(idj ,f)

commute for all j ∈ ob J , where {λj,X}j∈ob J are the legs of the limit cone over the diagram
D(j,X).

Then (L, {λj,−}j∈ob J) is the limit cone over D : J → [C,D] in [C,D].

4.7 The Single Most Important Result From Category Theory

Right adjoints preserve limits; left adjoints preserve colimits.

Theorem

Let C D⊥
F

G

be adjoint functors. Then:

• G preserves all limits which exist in D

• F preserves all colimits which exist in C.
Proof. Let J be a category, and suppose a diagram D : J → D has a limit (L, {λj}j∈ob J).
Observe that (GL, {Gλj}j∈ob J) is a cone over GD. Given any other cone (A, {αj}) over GD,
the adjunction F ⊣ G lets up map

homC(A,GD(j)) homD(FA,D(j))

αj ᾱj

∼=

for all j ∈ ob J . The ᾱj ’s form a cone over D with apex FA, so we have a unique induced

morphism FA
f̄−→ L making the diagam

FA L

D(j)

f̄

ᾱj λj
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commute for all j ∈ ob J , since L is a limit for D. Transposing this f̄ along the adjunction,

homC(A,GL) homD(FA,L)

f f̄

∼=

we obtain the desired factorisation A
f−→ GL.

Dually, F preserves all colimits which exist in C.

An immediate consequence is that in a cartesian closed category C, functors of the form
(−)×A preserve colimits.

Another consequence is that limits commute with limits, because the limit functor from
[J, C] to C is a right adjoint (consider the constant diagram functor ∆ : C → [J, C]). Dually,
colimits commute with colimits.

4.8 Injective Objects Have Nothing To Do With Injective Functions

Let us use the (dual of) the previous proposition above to define and prove the phrase “any
small category has enough projectives”.

For a locally small category C and A ∈ ob C, observe that the functor homC(A,−) preserves

monomorphisms: if X
f−→ Y is a monomorphism in C, then homC(A,X)

g 󰀁→fg−−−→ homC(A, Y )
is a monomorphism in Set. However, the functor homC(A,−) does not, in general, preserve
epimorphisms.

Definition
Let C be a locally small category and let E ⊆ mor C be a collection of (not necessarily all)
epimorphisms in C. We say that an object P ∈ ob C is E-projective if homC(P,−) preserves all

the epimorphisms in E. That is, for all epimorphisms X
f−→ Y in E, the mapping

homC(P,X)
f◦−−−→ homC(P, Y )

is surjective.

If E ⊆ mor C is the collection of all epimorphisms in a locally small category C, then an
E-projective object is simply called projective.

Recall that a regular epimorphism is an epimorphism which occurs as a coequaliser of a
pair of morphisms. If E ⊆ mor C is the collection of all regular epimorphisms in a locally small
category C, then an E-projective object is called regular projective.

Dually11, an object I ∈ ob C is said to be injective if I is projective in Cop.

Lemma
Let C be a category, and let η ∈ mor[C,Set]. Then η is an epimorphism in [C,Set] if and only
if ηA is an epimorphism in Set for all A ∈ ob C.

Proof. Clearly pointwise epimorphisms are epimorphisms in [C,Set], as natural transformations
are defined pointwise.

11For completeness, here is the full definition. An object I in a category C is said to be injective if the mapping

homC(Y, I)
−◦f−−−→ homC(X, I) is surjective for all monomorphisms X

f−→ Y in C.
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For the forward direction, first note that a morphism A
f−→ B in any category is epic if and

only if the square

A B

B B

f

f idB

idB

is a pushout. Now, Set has pushouts. So [C,Set] has pushouts. So any epimorphism in [C,Set]
must be a pointwise epimorphism, as the pushout along itself is constructed pointwise.

We remark the argument above follows through when Set is replaced with any category D
which has pushouts.

Dually, for categories C and D and for morphisms µ ∈ mor[C,D], if D has pullbacks, then µ
is a monomorphism in [C,D] if and only if µA is a monomorphism in D for all A ∈ obD.

The previous lemma can now help us show that the functors homC(A,−) are projective
whenever the category C is small.

Proposition
Let C be a small category and let A ∈ ob C. Then the functor homC(A,−) is projective in
[C,Set].

Proof. For any epimorphism F
η−→ G in [C,Set], the previous lemma tells us that η is pointwise

epic. Hence for any natural transformation β : homC(A,−) → G, we can let α : homC(A,−) →
F be some natural transformation which makes the chase of the element idA in the triangle

homC(A,A) idA

FA GA αA(idA) βA(idA)

βA
αA

ηA

commute, by virtue of ηA being surjective (since ηA is an epic in Set). Then ηα = β.

The smallness of C above is used to ensure that [C,Set] is locally small to allow us to speak
of projective objects. Now we show that any small category “has enough projectives”.

Proposition
Let C be a small category and let F : C → Set be a functor. Then there exists an epimorphism
P

η−→ F in [C,Set] such that P is projective in C.

Proof. Take

P :=
󰁊

A∈ob C,
x∈FA

homC(A,−)

and let P
η−→ F be the natural transformation whose (A, x)-th component is the natural trans-

formation which sends idA to x. Then η is an epimorphism in [C,Set] because it is a pointwise
epimorphism, and the coproduct of projective objects remains projective.
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4.9 “Christina Aguilera — Reflection (2020) (from Mulan)” is a Masterpiece

Lemma

Let C D⊥
F

G

be adjoint functors, and let η : idC → GF and ε : FG → idD be the unit and

counit of the adjunction respectively. Then:

• η is pointwise monic if and only if F is faithful;

• η is a natural isomorphism if and only if F is full and faithful;

• ε is pointwise epic if and only if G is faithful;

• ε is a natural isomorphism if and only if G is full and faithful.

Proof. Let A
f−→−→
g

A′ be a morphism in C. Under the adjunction bijection of F ⊣ G, we have the

correspondence

homC(A,GFA′) homD(FA,FA′)

(GFf)ηA Ff

F⊣G
∼=

and (GFf)ηA = ηA′f by the naturality of η. Similarly, Fg gets bijectively corresponded to
ηA′g. So η is pointwise monic if and only if F is faithful.

If η is upgraded to a natural isomorphism, then for all A,A′ ∈ ob C and all morphisms

FA
g−→ FA′ in D, we can define the morphism A

f−→ A′ in C to be the composite

A A′

GFA GFA′

f :=η−1
A′ (Gg)ηA

ηA

Gg

η−1
A′

and we get Ff = g. So F is, in addition to being faithful, also full.
Conversely, if F is full and faithful, then the fact that η is a natural isomorphism follows

from the isomorphisms

homC(A
′, A) homD(FA′, FA) homC(A

′, GFA)

f Ff (GFf)ηA′ = ηAf

F fully faithful
∼=

F⊣G
∼=

for all A,A′ ∈ ob C.
Dually, we have the results for ε and G.

Definition

A reflection is a pair of adjoint functors C D⊥
F

G

such that the counit ε : FG → idD is an

isomorphism.

Equivalently, by the previous lemma, a reflection is an adjunction F ⊣ G such that G is full
and faithful.
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Definition
Given a category C and a full subcategory D ⊆ C, we say that D is a reflective subcategory of C
if the inclusion functor C ι←− D is a right adjoint.

Note that the unit of the adjunction is an isomorphism on objects in the reflective subcat-
egory, via a similar chase to the previous lemma. Consequently, given a reflective subcategory
D of a category C, the inclusion functor C ι←− D creates all limits which exist in C, for given a
diagram D : J → D with a limit cone (L, {λj}j∈ob J) in C, the cone in D with apex FL and legs

FL FD(j) D(j)
Fλj

η−1
D(j)

is actually a limit cone over D.
Dually12, we have the notion of a coreflective subcategory.

4.10 The Adjoint Functor Theorems Are Simulatneously Useful and Useless

Theorem (The General Adjoint Functor Theorem)
Let C ←−

G
D be a functor, with D locally small and complete. Then G is a right adjoint if and

only if both of the following hold:

• G is continuous (i.e. G preserves all small limits);

• G satisfies the solution-set condition: for all A ∈ ob C there exists a set13 S ⊆ ob(A ↓ G)
which is collectively weakly initial14.

Proof. For the forward direction, letting η be the unit of the adjunction F ⊣ G, then the object
(FA, ηA) is initial in (A ↓ G), for all A ∈ ob C. And we already know that right adjoints preserve
limits.

For the converse direction, fix A ∈ ob C. We want to show that (A ↓ G) has an initial
object. Let S ⊆ ob(A ↓ G) be a set of collectively weakly initial objects. For brevity, denote
A := (A ↓ G). Proceed as follows.

1. Show that A = (A ↓ G) is locally small and complete, using the fact that D has and G
preserves all small limits.

2. Let J ⊆ A be the full subcategory of A with ob J = S. Let (L, {λj}j∈ob J) be the limit
cone, in A, of the inclusion diagram ι : J → A. We aim to show that L is initial in A.

3. For a ∈ obA, choose a morphism S ∋ ja
ha−→ a in A. Define the morphism L

ia−→ a to be
the composite

L ja a
λja ha

So, at the very least, L is a weakly initial object in A.

4. We did step 3 for all a ∈ obA. In particular, we did it for L ∈ obA. We produced a

morphism L
iL−→ L. Show that, in fact, we have iL = idL, using the limit cone properties

of L, and using that J is a full subcategory of A.

12For completeness, here is the full definition. Given a category D and a subcategory C ⊆ D, we say that C is
a coreflective subcategory of D if C is a full subcategory of D and the inclusion functor C ι−→ D is a left adjoint.

13Note that we say set instead of collection! This S is small!
14This means what you think it means: for any other object in the category, there is a morphism from some

object in S to that object.
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5. For a general a ∈ obA and a morphism L
f−→ a, construct the pullback P of the cospan

ja

jL L a

ha

hL f

in A. Then we get the commutative diagram

L

jP

P ja

jL L a

λjP

λja

λjL

hP

ha

hL f

in A, from which we get
f = f hLλjL󰁿 󰁾󰁽 󰂀

=iL=idL

= haλja = ia .

So L is initial in A.

If the category D in the general adjoint functor theorem has a certain properties, it is possible
to remove the solution set condition.

Definition
Let C be a category and A ∈ ob C. A subobject of A is a monomorphism in C with codomain A.

Given a category C and an object A in C, the collection of subobjects Sub(A) of A form a
preorder under the relation

m ≤ m′ if and only if there exists k ∈ homC(dom(m), dom(m′)) such that m′k = m,

and so we can consider Sub(A) as a category. Observe that if monomorphisms dom(m)
m−→ A

and dom(m′)
m′
−→ A in C are such that m ≤ m′ and m′ ≤ m, then there exists an isomorphism

dom(m)
k−→∼= dom(m′) such that m′k = m, so for all intents and purposes, m and m′ are “the

same”.
We say that C is well-powered if for all A ∈ ob C, the category Sub(A) is equivalent to a

small partial order (when considered as a category). Dually15, we have the notion of a category
being well-copowered.

First, an elementary lemma stating that “monomorphisms are stable under pullbacks”,
which is very easy to prove if you’re already reading this far into the document.

15For completeness, here is the full definition. A category C is said to be well-copowered if Cop is well-powered.
In other words, a quotient object of A ∈ ob C is an epimorphism with domain A, and we can impose an ordering
e ≤ e′ on quotient objects e, e′ of A if and only if there exists k ∈ homC(cod(e), cod(e

′)) such that ke′ = e. Then
the category C is well-copowered if and only if for all A ∈ ob C the category of quotient objects of A considered
as a preorder is equivalent to a small partial order.
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Lemma
Suppose we have a pullback square

P A

B C

h

k f

g

in some category, with f monic. Then k is also monic.

Dually, epimorphisms are stable under pushouts.
Recall the notion of a coseparating family of objects in a locally small category, which is a

family of objects S in a locally small category C such that the functors {homC(−, s)}s∈S are
collectively faithful.

Proposition (The Special Adjoint Functor Theorem)
Let C ←−

G
D be a functor, with D locally small and complete. Suppose further that D is well-

powered and has a coseparating set16 of objects S ⊆ obD. Then G is a right adjoint if and only
if G is continuous.

Proof. Again, the forward direction is simply because right adjoints preserve limits.
For the converse, for A ∈ ob C, again denote A := (A ↓ G). Proceed as follows.

1. Show that A = (A ↓ G) is locally small, complete, and well-powered.

2. Show that { (s, f) : s ∈ S and f ∈ homC(A,Gs) } is a coseparating set for A = (A ↓ G).

3. Define P :=
󰁔

s∈S s. Take the limit cone with apex is I ∈ obD, say, of the diagram
whose edges are a representative set of subobjects of P , i.e. a set which contains at least
one member of every isomorphism class of subobjects of P . As with the previous lemma,
the legs of this limit cone will all be monomorphisms. In particular, I ↣ P is the least
subobject of P . And any parallel pair of morphisms out of I must be equal, for their
equaliser would be a subobject of I.

4. For all A′ ∈ obA, the induced morphism in the diagram

A′ 󰁔
s∈S,

f∈homC(A
′,s)

s

f πs,f

, for all s ∈ S and f ∈ homC(A
′, s),

must be a monomorphism since S is a coseparating set.

5. For all A′ ∈ obA, form the pullback P ′ of the canonical induced maps

P →
󰁜

s∈S,f∈homC(A
′,s)

s ← A′

16Again, notice the use of the word set.
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as shown below
I P ′ A′

P
󰁔
s∈S,

f∈homC(A
′,s)

s

s

f

πs
πs,f

to obtain a morphism I → A′. Conclude that I is initial in A.
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5 Monads

5.1 a MoNaD iS a MoNoId In ThE cAtEgOrY oF eNdOfUnCtOrS

Definition
Let C be a category. A monad on C is a triple T := (T, η, µ), where

• T : C → C is a functor, also called an endofunctor,

• η : 1C → T is a natural transformation, called the unit of T, and

• µ : TT → T is a natural transformation, called the multiplication of T,

such that the following three diagrams

T TT T TT

T T

TTT TT

TT T

idT

Tη

µ

ηT

idT
µ

Tµ

µT µ

µ

in [C, C] commute.

The first two commutative triangles in the definition above are called the left unit diagram
and the right unit diagram respectively, and the third commutative square above is called the
associativity diagram.

An adjunction C D⊥
F

G

with unit η : idC → GF and counit ε : FG → idD give rise to a

monad structure on C by setting

• the endofunctor to be T := GF ,

• the unit of the monad to be η, and

• the multiplication of the monad to be µ := GεF .

A very natural question is now: does every monad arise from doing the construction above
to some adjunction? The answer is yes. We shall see two different adjunction constructions
from monads, one due to Heinrich Kleisli, and the other due to Samuel Eilenberg and John
Moore.

5.2 Computer Scientists Like This One

Heinrich Kleisli took quite a “minimalistic approach” when creating an adjunction which gives
rise to a fixed monad. It is inspired from the observation that when we are given an adjunction

C D⊥
F

G

which induces a monad T, we can replace D by the full subcategory generated by

the objects {FA}A∈ob C in D, as this will still yield the same monad T. The Kleisli category
is of interest to functional programmers. Perhaps the easiest way to grasp it is to look at the
Kleisli category arising from the Maybe Monad, used for exception-handling and call-by-value
functions with side-effects in functional programming.
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Definition
Let T = (T, η, µ) be a monad on a category C. The Kleisli category CT is the category where:

• ob CT := ob C;

• homCT(A,B) := homC(A, TB) for A,B ∈ ob CT;

• for any two morphisms A B C
f g

in CT, the composition A C
gf

in CT
is defined to be the composite morphism

A TB TTC TC
f Tg µC

in C.

• for any A ∈ ob CT, the identity morphism A idA in CT is the morphism

A TA
ηA

in C.

The squiggly coloured arrows are merely there to distinguish the morphisms in the Kleisli
category from the morphisms in the original category. When handwriting, one can simply draw
the wavy arrows A ⇝ B, and that would be sufficient to distinguish it from a morphism in C.
Using both coloured and squiggly arrows is overkill. But who’s going to stop me?

Let T = (T, η, µ) be a monad on a category C. Define the functor C FT−→ CT as follows:

• on objects, FT(A) := A;

• on morphisms, FT(A
f−→ B) is defined to be the composite morphism

A B TB
f ηB

in C.

Define the functor C ←−−
GT

CT as follows:

• on objects, GT(A) := TA;

• on morphisms, GT( A B
f

) is defined to be the composite

TA
Tf−−→ TTB

µB−−→ TB

in C.

These two functors FT and GT form an adjunction which give rise to the monad T.

Proposition

Let T = (T, η, µ) be a monad on a category C. Then we have an adjunction C CT⊥
FT

GT

inducing the monad T.

Proof. The unit of this adjunction is η. The counit of this adjunction is ε : FTGT → idCT defined

as follows: FTGTA A
εA is defined to be the identity morphism TA

idTA
in C, for all

A ∈ ob CT.
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5.3 Whereas Mathematicians Like This One

Samuel Eilenberg and John Moore also produced an adjunction inducing a given monad. This
construction has quite a rich theory to it and is, in some sense, more elegant. At the very
least, we don’t need different coloured arrows to spell out the Eilenberg–Moore category. More
profoundly, this construction generalises algebraic structures.

Definition
Let T = (T, η, µ) be a monad on a category C. The Eilenberg–Moore category (of algebras) CT

is the category where:

• the objects of CT are Eilenberg–Moore algebras/T-algebras, which are pairs (A,α) where

A ∈ ob C and TA
α−→ A is a morphism in C, making the following two diagrams

A TA TTA TA

A TA A

ηA

idA
α

Tα

µA α

α

in C commute;

• a morphism (A,α)
f−→ (B,β) in CT is a morphism in A

f−→ B in C making the diagram

TA TB

A B

α

Tf

β

f

in C commute, and is called a homomorphism of T-algebras.

• composition and identity morphisms in CT are composition and identity morphisms in C.

Let T = (T, η, µ) be a monad on a category C. Define the functor C FT
−−→ CT as follows:

• on objects, FT(A) := (TA, µA);

• on morphisms FT(A
f−→ B) := (TA

Tf−−→ TB).

Define the functor C ←−−
GT

CT to be the forgetful functor, which forgets the T-algebra structure

and returns the underlying objects and morphisms in C. As before, these two functors FT and
GT form an adjunction which give rise to the monad T.

Proposition

Let T = (T, η, µ) be a monad on a category C. Then we have an adjunction C CT⊥
FT

GT

inducing the monad T.

Proof. The unit of this adjunction is η. The counit of this adjunction is ε : FTGT → idCT defined
by ε(A,α) := α for all (A,α) ∈ ob CT.
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5.4 Cope and Seethe, Kleisli.

For a monad T on a category C, let Adj(T) be the category whose:

• objects are adjoint functors C D⊥
F

G

which induce the monad T on C;

• morphisms ( C D⊥
F

G

)
K−→ ( C D′⊥

F ′

G′
) are functors K : D → D′ such that

KF = F ′ and G′K = G .

Note that we have equalities above. Not isomorphisms. Interesting.

Proposition
Let T be a monad on a category C. Then:

• the Kleisli adjunction C CT⊥
FT

GT

is an initial object in Adj(T);

• the Eilenberg–Moore adjunction C CT⊥
FT

GT
is a terminal object in Adj(T).

Proof. Fix ( C D⊥
F

G

) ∈ obAdj(T). Let ε : FG → idD be the counit of this adjunction.

The Kleisli comparison functor CT
H−→ D in Adj(T) is defined as follows:

• on objects, HA := FA, for A ∈ ob CT;

• on morphisms, H( A B
f

) := (FA FGFB FB
Ff εFB ).

The Eilenberg–Moore comparison functor D K−→ CT in Adj(T) is defined as follows:

• on objects, KB := (GB,GεB), for B ∈ obD;

• on morphisms, K(B
g−→ B′) is the morphism GB

Gg−−→ GB′ in C.

So far, it seems that the Kleisli category and the Eilenberg–Moore category are both in-
teresting in their own right with their own properties. This is true. However, you will find
some mathematicians arguing that the Eilenberg–Moore category is better. Let’s explore some
arguments they propose.

The Kleisli comparison functor H : CT → D sends a morphism A B
f

in CT, which
is secretly the morphism A

f−→ GFB in C, to its transpose along the adjunction bijection
homC(A,GFB) ∼= homD(FA,FB). Thus H is full and faithful, and this allows us to fully and
faithfully embed the Kleisli category into the Eilenberg–Moore category.

Corollary
Let T = (T, η, µ) be a monad on a category C. Then the assignment

• A 󰀁→ (TA, µA), for A ∈ ob CT, and

• ( A B
f

) 󰀁→ ( (TA, µA) (TB, µB)
µBTf

), for ( A B
f

) ∈ mor CT,
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is a full and faithful functor from CT to CT.

The Eilenberg–Moore category of a monad T = (T, η, µ) on a category C is a lot more well-
behaved than the Kleisli category when it comes to limits and colimits. Both of them have some
structure, because they stem from adjunctions — right adjoints preserve limits and left adjoints
preserve colimits. In particular, if the category C has coproducts, then the Kleisli category CT
also has coproducts because FT is a left adjoint and is bijective on objects. But, in general, CT
has few other limits or colimits. A lot more can be said about the Eilenberg–Moore category
CT.

To start with, forgetful functor C ←−−
GT

CT creates all the limits which exist in C. Consider,

for example, the diagram (A,α) (B,β)
f

in CT and suppose that its image under GT has

a limit cone (L, {λA,λB}). We get the following commuting diagram in C:

TL

L

A B

TA TB

∃!

TλβTλα

λA λB

f

α
Tf

β

Then L paired with the unique morphism induced above is the apex of the limit cone of the

diagram (A,α) (B,β)
f

in CT, and this limit cone in CT has λA and λB as its legs.

Rather similarly (but not dually), the forgetful functor C ←−−
GT

CT creates all the colimits

which both exist in C and are preserved by T . And, of course, if GT creates a colimit, then in
particular it preserves that colimit, whence T = GTFT also preserves that colimit because FT

is a left adjoint.

5.5 Comathematics and Mputer Science

You thought you were safe because you haven’t seen dual definitions in a while? Cute. And
yes, I didn’t shaft all this to footnotes purely for this subsection title.

A comonad on a category D is a triple S = (S, ε, δ) where S : D → D is a functor, and
ε : S → idD and δ : S → SS are natural transformations satisfying (Sε)δ = idS , (εS)δ = idS ,
and (Sδ)δ = (δS)δ. That is, the following three diagrams

S SS S SS

S S

SSS SS

SS S

Sε εS

idS
δ

idS
δ

Sδ

δS δ

δ

in [D,D] commute. In this case, ε is called the counit of S and δ is called the comultiplication
of S. In other words, (S, ε, δ) is a comonad on D if and only if (Sop, εop, δop) is a monad on Dop.
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First, observe that if we have an adjunction C D⊥
F

G

, then we also have the adjunction

Dop Cop⊥
Gop

F op

, i.e. we have a bijection

homDop(B,F opA) ∼= homCop(GopB,A)

which is natural in A and B, for all A ∈ ob Cop and B ∈ obDop. This shouldn’t be sur-
prising, because unravelling everything in the bijection above gives us the familiar bijection
homC(A,GB) ∼= homD(FA,B). If η and ε are, respectively, the unit and counit of the adjunc-
tion F ⊣ G, then the adjunction Gop ⊣ F op will have ε as its unit and η as its counit. Con-

sequently, (F opGop, εop, F opηopGop) is a monad on Dop. Therefore, the adjunction C D⊥
F

G

induces the comonad (FG, ε, FηG) on D.
As before, every comonad S = (S, ε, δ) on a category D arises from some adjunction in

the way spelled out above. Indeed, we simply dualise the Kleisli and the Eilenberg–Moore
constructions.

• The co-Kleisli category for the comonad S = (S, ε, δ) has the same objects as D, and a

morphism A B
f

in the co-Kleisli category is a morphism SA B
f

in D. A
composite morphism

A B C
f g

in the co-Kleisli category is defined to be the composite

SA SSA SB C
δA Sf g

in D, with the morphism SA A
εA in D as the identity morphism on A in the co-

Kleisli category.

• The objects of the co-Eilenberg–Moore category of S-coalgebras are pairs (A,α) with
A ∈ obD and α ∈ homD(A,SA) such that the following two diagrams

A SA SSA SA

A SA A

εA Sα

idA
α δA α

α

in D commute. A homomorphism (A,α)
f−→ (B,β) of S-coalgebras is a morphism f ∈

homD(A,B) such that (Sf)α = βf .

Again, in the category of adjunctions inducing a comonad S on a category D, the co-Kleisli
adjunction is an initial object and the co-Eilenberg adjunction is a terminal object. So we have
the relevant comparison functors.

5.6 Communists Like Equalisers; Capitalists Like Coequalisers.

We take a brief pause on (co)monads to discuss several notions related to coequalisers which
will be used in the monadicity theorems later.

A parallel pair of morphisms A
f−→−→
g

B is said to be reflexive if there exists a morphism A
r←− B

such that fr = gr = idB. In other words, f and g have a common right inverse. A coequaliser
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of a reflexive pair of morphisms is called a reflexive coequaliser, and a category C is said to have
reflexive coequalisers if any reflexive pair of morphisms in C has a coequaliser.

If a category C has all finite coproducts and all reflexive coequalisers, then C has all small
colimits. One may repeat the proof of this fact with the word “reflexive” removed and observed
the the induced pair of morphisms which we take a coequaliser out of actually form a reflexive
pair.

Given a reflexive pair of morphisms A
f−→−→
g

B, then a morphism B
e−→ E is a coequaliser of f

and g if and only if the diagram

A B

B E

f

g e

e

is a pushout diagram. This is particularly interesting, because it implies that any category
which has all pushouts also has all reflexive coequalisers, despite (in general) not having all
coequalisers.

In any cartesian closed category C, reflexive coequalisers commute with finite products in
the following sense: if we have reflexive coequaliser diagrams

A1 B1 E1

A2 B2 E2

f1

g1

e1

f2

g2

e2

in a cartesian closed category C, then B1 ×B2
e1×e2−−−−→ E1 × E2 is the coequaliser of the parallel

pair A1 × A2

f1×f2−−−−→−−−−→
g1×g2

B1 × B2. This is an instance of a slightly more general result: if we are

given arbitrary categories C and D and a functor F : C × D → E such that all the functors
in {F (A,−) : D → E}A∈ob C and all the functors in {F (−, B) : C → E}B∈obD preserve reflexive
coequalisers, then F : C×D → E also preserves reflexive coequalisers. Indeed, if we had reflexive
coequaliser diagrams

A1 B1 E1

A2 B2 E2

f1

g1

e1

f2

g2

e2

in C and D respectively, then all the rows and columns of the diagram

F (A1, A2) F (B1, A2) F (E1, A2)

F (A1, B2) F (B1, B2) F (E1, B2)

F (A1, E2) F (B1, E2) F (E1, E2)

F (f1,idA2
)

F (g1,idA2
)

F (idA1
,g2)F (idA1

,f2)

F (e1,idA2
)

F (idB1
,g2)F (idB1

,f2) F (idE1
,g2)F (idE1

,f2)

F (idA1
,e2)

F (f1,idB2
)

F (g1,idB1
)

F (e2,idB2
)

F (idB2
,e2) F (idE1

,e2)

F (g1,idE2
)

F (f1,idE2
)

F (e1,idE2
)
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in E are also reflexive coequaliser diagrams, by assumption. Observe that the morphisms

F (A1, A2)
F (f1,f2)−−−−−→−−−−−→
F (g1,g2)

F (B1, B2) are diagonals of the upper left (serially commuting) square(s), and

that the diagonal of the lower right (commuting) square is the morphism F (B1, B2)
F (e1,e2)−−−−−→

F (E1, E2). One can now show that the lower right square is in fact a pushout square by
recalling that all coequalisers are epic. Now one can use the reflexivity to prove that in

F (B1, B2)
F (e1,e2)−−−−−→ F (E1, E2) is the coequaliser of the pair F (A1, A2)

F (f1,f2)−−−−−→−−−−−→
F (g1,g2)

F (B1, B2). In

particular, in the case where C = D = E and the category C is cartesian closed, then the func-
tors (−)×B : C → C and A× (−) : C → C preserve reflexive (as they are functorial) coequalisers
(as they are left adjoints). Thus the functor F (A,B) := A×B preserves reflexive coequalisers,
meaning that

A1 ×A2 B1 ×B2 E1 × E2

f1×f2

g1×g2

e1×e2

will also be a reflexive coequaliser diagram in C. Notably, this holds for C = Set. This is
particularly interesting because, in general, (arbitrary) coequalisers do not commute with finite
products in Set (notice that a coequaliser is the colimit of a diagram of shape • • ,
which is not a filtered category).

Note that a reflexive coequaliser is precisely (a leg of) the colimit of a diagram of the shape17

A B

f

g

s

t
r

where f , g, r, s, and t are all non-identity morphisms such that fr = gr = idB, rf = s, and

rg = t. Of course, this is just the shape of the diagram; a reflexive pair A
f−→−→
g

B with common

right inverse r may (but need not) satisfy rf = idA or rg = idA.
Be careful to not confused the word “reflexive” in the phrase “reflexive coequaliser” with

the word “reflective” in the phrase “reflective subcategory”. Apologies if you have dyslexia.

Now, given a pair of morphisms A
f−→−→
g

B, a split coequaliser of f and g consists of all the

additional morphisms in the diagram below

A B E
f

g

t

e

s

such that ef = eg, es = idE , gt = idB, and ft = se. Notice that this is not symmetric in f
and g; they play different roles in the diagram above. However, B

e−→ E is still a coequaliser of
f and g. As split coequalisers are defined purely in terms of compositions and identities, any
functor preserves split coequalisers.

Given a functor C F−→ D, we say that a parallel pair of morphisms A
f−→−→
g

B in C is F -split if

FA
Ff−−→−−→
Fg

FB is part of a split coequaliser diagram in D.

Dually18, we have the notions of coreflexive equalisers and split equalisers (as well as the
dual notion of an F -split pair but I cannot think of a name for that).

17“Looks like a willy.” — Daniel Naylor, 2024, in the core of the Centre for Mathematical Sciences at the
University of Cambridge.

18For completeness, here are the full definitions. A pair of morphisms A
f−→−→
g
B is coreflexive if there is a morphism
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5.7 It’s Crazy That Monads Are Actually Useful in Real Life

Suppose we have an adjunction C D⊥
F

G

which induces a monad T on a category C. Is the

Kleisli comparison functors H : CT → D an equivalence of categories? Well, recall that H is
full and faithful. So H is an equivalence of categories if and only if H is essentially surjective.
But recall that ob CT = ob C and that we defined H to agree with F on objects. So H is an
equivalence if and only if F is essentially surjective.

Is the Eilenberg–Moore comparison functor K : D → CT an equivalence of categories? This
is a lot harder to answer. So hard, in fact, that we introduce a new definition precisely when
this is the case.

Definition

Fix an adjunction C D⊥
F

G

, and let T be the monad induced by this adjunction. The ad-

junction F ⊣ G is said to be monadic if the Eilenberg–Moore comparison functor K : D → CT

is part of an equivalence of categories between D and CT.

We often simply say a functor C ←−
G

D is monadic if G occurs as a right adjoint and the

adjunction is monadic. If C ←−
G

D is a monadic functor, then G creates all limits which exist

in C, because the forgetful functor C ←−−
GT

CT creates all limits which exist in C, and equivalence

functors preserve limits (because they are, in particular, right adjoints). Similarly, a monadic
functor C ←−

G
D creates all colimits which both exist in C and are preserved by the underlying

functor T : C → C of the induced monad T.
Dually19, we have the notion of an adjunction or a functor being comonadic.
The main question is now reworded as “When is a functor monadic?” This is answered in

the form of the monadicity theorems. At the heart of all of them is the following lemma: under
certain conditions, the Eilenberg–Moore comparison functor can occur as a right adjoint!

Lemma

Let C D⊥
F

G

be an adjunction inducing a monad T = (T, η, µ) on a category C. Let ε : FG →

idD be the counit of the adjunction F ⊣ G. Suppose that, for all T-algebras (A,α) ∈ ob CT, the
pair of morphisms

FGFA FA
Fα

εFA

in D has a coequaliser. Then the Eilenberg–Moore comparison functor CT ←−
K

D has a left

adjoint CT L−→ D.

Proof. The forward direction is simply because GTK = G, giving LFT ∼= F in [C,D], and
because left adjoints preserve coequalisers.

Define L : CT → D as follows:

A
ℓ←− B such that ℓf = ℓg = idA. A coreflexive equaliser is an equaliser of a coreflexive pair of morphisms. A split

equaliser diagram of a pair of morphisms A
f−→−→
g
B is a diagram E

e−→←−
s
A

f−→
g−→←−
t

B such that fe = ge, se = idE , tg = idA,

and tf = es.

19For completeness, here is the full definition. For functors C
F−→←−
G

D with F ⊣ G, we say that the adjunction

F ⊣ G is comonadic if the co-Eilenberg–Moore comparison functor from C to the co-Eilenberg–Moore category of
coalgebras is an equivalence. We then say that a functor F is comonadic if it is a left adjoint and the adjunction
is comonadic.
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• for (A,α) ∈ ob CT, take the coequaliser

FGFA FA L(A,α)
Fα

εFA

λ(A,α)

in D, and let L(A,α) be the codomain of this equaliser;

• for
󰀃
(A,α)

f−→ (B,β)
󰀄
∈ mor CT, we have the commuting diagram

FGFA FA L(A,α)

FGFB FB L(B,β)

Fα

εFA

FGFf

λ(A,α)

Ff ∃!

Fβ

εFB
λ(B,β)

in D, and we let Lf be the unique morphism induced above.

Then the following string of natural bijections, for (A,α) ∈ ob CT and B ∈ obD,

{f ∈ homC(A,GB) : fα = (GεB)(GFf)} {g ∈ homD(FA,B) : g(Fα) = gεFA}

homC(A,KB) homD(L(A,α), B)

∼=definition of K

∼=
F⊣G

∼= universal property of ccoequalisers

establish the adjunction L ⊣ K.

Observe that the pair of morphisms FGFA FA
Fα

εFA

in the statement of the lemma

above is actually both reflexive and G-split. Indeed, they have FGFA
FαA←−−− FA as a common

right inverse, and we have a split coequaliser diagram

GFGFA GFA A
GFα

GεFA=µA

α

ηGFA
ηA

in C.

Theorem (Beck’s Monadicity Theorem / The Precise Monadicity Theorem)
Let C ←−

G
D be a functor. Then G is monadic if and only if both of the following hold:

• G is a right adjoint;

• G creates coequalisers of G-split pairs in D.

Proof. For the forward direction, by definition, G occurs as the right adjoint in some adjunction
F ⊣ G and induces a monad T on C. Now given a G-split pair in D, use the Eilenberg–Moore

comparison functorD K−→ CT to map this pair to aGT-split pair in CT. If we have a coequaliser for
this GT-split pair in CT, then the Eilenberg–Moore comparison functor (which an an equivalence,
by assumption!) creates a coequaliser for the original G-split pair in D, because equivalence of
categories create all limits and colimits.
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Now if (A,α)
f−→−→
g

(B,β) in CT is a GT-split pair of morphisms, then (recalling that GT is the

forgetful functor) we have the split coequaliser diagram

A B E
f

g

t

e

s

in C. Now, split coequaliser diagrams are preserved by any functor. In particular, they are
preserved by the functors T := GF and TT .

TA TB TE

A B E

α

Tf

Tg

β

Te

T t Ts

f

g

t

e

s

Then the morphism (B,β)
e−→ (E, eβ(Ts)) in CT is a coequaliser of the pair (A,α)

f−→−→
g

(B,β).

Now we prove the converse. The hypotheses of the converse give an adjunction F ⊣ G,
with counit ε : FG → idD and inducing a monad T on C. The conditions of the previous

lemma on this adjunction are satisfied. So we have an adjunction CT D⊥
L

K

, where K is

the Eilenberg–Moore comparison functor. This adjunction comes with unit η̃ : idCT → KL and
counit ε̃ : LK → idD. We will prove that both η̃ and ε̃ are natural isomorphisms, establishing
that K is an equivalence.

Consider an object (A,α) ∈ ob CT. What is the unit morphism (A,α)
η̃(A,α)−−−−→ KL(A,α)?

Well, recall that L(A,α) is defined to be the codomain of the following coequaliser diagram:

FGFA FA L(A,α)
Fα

εFA

λ(A,α)

Also, recall that KB := (GB,GεB) for all B ∈ obD. Finally, recall that a morphism in CT is

just a morphism in C making a certain square commute. So this unit morphism (A,α)
η̃(A,α)−−−−→

KL(A,α) lives in the following diagram

GFGFA GFA GL(A,α)

A

GFα

GεFA

Gλ(A,α)

α η̃(A,α)

in C. Now, α is a (split) coequaliser of GFGFA
GFα−−−→−−−→
GεFA

GFA by definition of (A,α) being a

T-algebra. But also, by assumption, Gλ(A,α) is also a coequaliser since G creates (and hence
preserves) coequalisers of G-split pairs in D. Consequently, η̃(A,α) is the factorisation obtained
from the universal property of coequalisers, and must thus be an isomorphism.

Similarly, for B ∈ obD, stare at the diagram

FGFGB FGB L(GB,GεB)

B

FGεB

εFGB

λ(GB,GεB)

εB ε̃B
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in D and conclude that LKB
ε̃B−→ B is an isomorphism.

There are several variants of Beck’s monadicity theorem. One instance of these is the
following “crude” version, with a very similar proof to Beck’s precise monadicity theorem.

Theorem (The Crude Monadicity Theorem)
Let C ←−

G
D be a functor. Suppose D has reflexive coequalisers. Suppose further that all of the

following hold:

• G is a right adjoint;

• G preserves reflexive coequalisers;

• G reflects isomorphisms.

Then G is monadic.

5.8 ... for Some Contrived Definition of “Real Life”

A finitary algebraic category is a category whose objects and morphisms are sets and func-
tions equipped with finitary operations satisfying certain equations. Slightly more explicitly, a
finitary algebraic theory is a single-sorted theory, with signature consisting of function symbols
of finite arity, subject to universally quantified equational axioms. For instance, the category
Grp of groups and group homomorphisms, the category Ab of abelian groups and group ho-
momorphisms, the category Ring of rings and ring homomorphisms, the category Vectk of
vector spaces over a field k and linear transformations, the category Lat of lattices and lattice
homomorphisms, etc. are all examples of finitary algebraic categories.

On any finitary algebraic category A, we can define the forgetful functor U : A → Set by
simply forgetting the algebraic structure on the objects inA and simply returning the underlying
set, and by similarly returning the underlying functions associated to morphisms in A. We can
often use the crude monadicity theorem to prove that the forgetful functor Set ←−

U
A is monadic,

by arguing as follows.

• The forgetful functor Set ←−
U

A has a left adjoint functor Set
F−→ A, typically by making

the “free A-structure” from s set, or by using the adjoint functor theorems.

• The forgetful functor U reflects isomorphisms, as an isomorphism in A is typically defined
to be morphism in A whose underlying function is bijective.

• The forgetful functor U creates (and hence preserves) reflexive coequalisers. Indeed, if

A
f−→−→
g

B is a reflexive pair of morphisms in A, then UA
Uf−−→−−→
Ug

UB is also a reflexive pair in

Set. So if UB
e−→ E is the coequaliser of UA

Uf−−→−−→
Ug

UB in Set, then UB×UB
e×e−−→ E×E is

the coequaliser of UA×UA
Uf×Uf−−−−−→−−−−→
Ug×Ug

UB ×UB, because Set is a cartesian closed category.

Hence we have a unique induced function E × E → E in Set

UA× UA UB × UB E × E

UB E

Uf×Uf

Ug×Ug

e×e

multiplication in A ∃!

e
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which is a binary operation on E. And we can do this for all n-ary operations needed
to make an A-structure. So we have turned E into an A-structure Ẽ which turns the
function UB

e−→ E into an A-morphism B
e−→ Ẽ which also happens to be a coequaliser in

A.

In particular, the forgetful functor Set ←−
U

A creates all limits! Also, all the colimits U creates

coincides with the colimits which are preserved by the underlying functor T : Set → Set of the
induced monad T. Now, U creates filtered colimits. So T preserves filtered colimits, using a
similar argument as to U creating reflexive coequalisers. Thus, in any finitary algebraic category
A, filtered colimits commute with finite limits because the forgetful functor Set ←−

U
A reflects

isomorphisms.
In the case where we have an algebraic structure with infinitary operations, for example

in the category CLat of complete lattices and lattice homomorphisms, we can still use Beck’s
(precise) monadicity theorem to show that the relevant forgetful functors are monadic (if it
indeed does have a left adjoint).

Now let ω be the full subcategory of Set where obω is precisely the set of finite ordinals.
This is a skeleton of the category of finite sets. The choice of ordinals isn’t important; any
skeleton of the category of finite sets will work, but we may as well stick with a concrete one.

Definition
A Lawvere theory is a pair (T , [−]) where T is a small category which has all finite coproducts
and [−] : ω → T is a functor which is bijective on objects and preserves all finite coproducts.

This definition has been categorified beyond all comprehension. But it simply says that the
objects of T can be thought of as the set {[0], [1], [2], [3], . . . } such that

[n+ k] ∼= [n] + [k] in T

for all n, k ∈ obω.

Definition
Let C be a category with finite products and let T be a Lawvere theory. A model of T in C
is a functor M : T op → C which preserves finite products. The category T -Mod(C) is the full
subcategory of [T op, C] such that ob

󰀃
T -Mod(C)

󰀄
is the collection of all models of T in C.

Good heavens. Another definition categorified beyond all comprehension. Perhaps we should
actually do an example this time to drive the intuition.

Example
Let (TGrp, F ) be the Lawvere theory of groups: the functor F : ω → TGrp is the restriction of
the free group functor Set → Grp to ω. In particular, TGrp is the full subcategory of Grp
whose objects are free groups with a finite ordinal as their generating set. For example, F (0) is
isomorphic to the trivial group and F (1) ∼= Z in Grp.

Given anyG ∈ obGrp, the functor homGrp(−, G) : T op
Grp → Set is a model of TGrp in Set. For

(G
f−→ H) ∈ morGrp, we can associate to this group homomorphism a natural transformation

homGrp(−, G) → homGrp(−, H) defined by

homGrp(K,G) homGrp(K,H)

g f ◦ g

for all K ∈ ob T op
Grp. This assignment Grp → TGrp-Mod(Set) is functorial; any group can be

turned into a model of TGrp in Set.
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Conversely, suppose M : T op
Grp → Set is a model of TGrp in Set. Letting G := MF (1), we can

define a binary operation 󰂏 : G×G → G by

G×G MF (1)×MF (1) MF (2) MF (1) G

(x, y) x 󰂏 y

= ∼= Mµ =

where µ ∈ homTGrp(F (1), F (2)) is the unique group homomorphism satisfying µ(a) = bc (that
is, the word bc), where {a} is the generating set for F (1), and {b, c} is the generating set for
F (2). Then if we additionally define the following four group homomorphisms in TGrp:

• denote F (1)
η−→ F (0) and F (0)

e−→ F (1), noting F (0) is both an initial object and a terminal
object in Grp;

• define F (1)
i−→ F (1) by i(a) := a−1;

• define F (2)
∆−→ F (1) by ∆(b) := ∆(c) := a;

we get the following five commutative diagrams

F (3) F (2)

F (2) F (1)

F (1) F (2) F (1) F (2)

F (1) F (1)

F (1) F (1)

F (2) F (0) F (2) F (0)

F (2) F (1) F (2) F (1)

µ+idF (1)

idF (1)+µ

µ

µ

η+idF (1) idF (1)+η

idF (1)

µ
idF (1)

µ

∆ e ∆ e

i+idF (1)

η

µ

idF (1)+i

µ

η

in TGrp. Consequently, (G, 󰂏) is a group. For example, the first diagram above yields the
following commutative diagram

G×G×G MF (3) MF (2) G×G

G×G MF (2) MF (1) G

∼= Mµ+idMF (1)

idMF (1)+Mµ Mµ

∼=

Mµ∼= =
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in Set, which establishes the associativity law for (G, 󰂏). We can also assign a natural trans-
formation (M

α−→ N) ∈ mor
󰀃
TGrp-Mod(Set)

󰀄
to the group homomorphism

MF (1) NF (1)

x αF (1)(x)

αF (1)

where MF (1) and NF (1) are given the group structures described above. So we have a functor
TGrp-Mod(Set) → Grp.

These two functors establish an equivalence between the category Grp and the category
TGrp-Mod(Set). The takeaway mantra from this example is “A Set-group is a group”.

If Ffree : Set → Grp is the free group functor and U : Grp → Set is the forgetful functor,

then we have an adjunction Set Grp⊥
Ffree

U

which induces a monad TGrp on Set. Then, in

addition to the equivalence TGrp-Mod(Set) ≃ Grp above, we also have

TGrp-Mod(Set) ≃ Grp ≃ SetTGrp .

And this holds for any finitary algebraic theory! First, a quick defininition. A finitary monad
is a monad T = (T, η, µ) on Set such that the underlying functor T : Set → Set preserves filtered
colimits. Then we have the following characterisation of finitary algebraic categories.

Theorem
If A finitary algebraic category, then A is equivalent to SetT for some finitary monad T.

Theorem
If T is a finitary monad on Set, then SetT is equivalent to T -Mod(Set) for some Lawvere
theory T .

Theorem
If T is a Lawvere theory, then T -Mod(Set) is equivalent to some finitary algebraic category A.

We won’t prove these theorems because I’m lazy. Let’s just do a couple examples to see how
we have generalised finitary algebraic theories.

Example
Consider again the Lawvere theory of groups (TGrp, F ). Then

TGrp-Mod(Top) ≃ TopGrp ,

where Top is the category of topological spaces and continuous functions, and TopGrp is
the category of topological groups and continuous group homomorphisms. So we have the
tautological-sounding phrase “A Top-group is a topological group”.

Example
Consider again the Lawvere theory of groups (TGrp, F ). Then

TGrp-Mod(Grp) ≃ Ab ,

where Ab is the category of abelian groups and group homomorphisms. To (partially) see
this, let M : T op

Grp → Grp be a model of TGrp in Grp, and let (G, ∗) := MF (1). Defining the

group homomorphism i : F (1) → F (1) by i(a) := a−1, where {a} is the generating set of F (1),
we then see that (Mi)(x) = x−1 for all x ∈ G. But M(i) is also a group homomorphism, so
(x ∗ y)−1 = x−1 ∗ y−1 for all x, y ∈ G.

You can now haunt your friends with the phrase “A Grp-group is an abelian group”.

52



Bibliography

[1] Emanuele Dotto. MA4M6 Category Theory. Lectures for the academic year 2023–2024 at
the University of Warwick, 2024.

[2] Peter Johnstone. Topos Theory. London Mathematical Society Monographs, 10. Academic
Press Inc. (London) Ltd, 1977.

[3] Peter Johnstone. Part III Category Theory. Lectures for the academic year 2024–2025 at
the University of Cambridge, 2024.

[4] Saunders Mac Lane. Categories for the Working Mathematician. Springer Science+Business
Media New York, 2nd edition, 1978.

[5] Kit Liu. The Yoneda Lemma, 2023. URL (version 2025-01-09): https://

warwickmathssociety.com/assets/essays-2/100%20-%20The%20Yoneda%20Lemma.pdf.

[6] Kit Liu. Structural Foundations in Topoi, 2024. URL (version 2025-01-09):
https://warwickmathssociety.com/assets/essays-3/82%20-%20Structural%

20Foundations%20in%20Topoi.pdf.

[7] Emily Riehl. Category Theory in Context. Cambridge University Press, 2014.

53

https://warwickmathssociety.com/assets/essays-2/100%20-%20The%20Yoneda%20Lemma.pdf
https://warwickmathssociety.com/assets/essays-3/82%20-%20Structural%20Foundations%20in%20Topoi.pdf

