
Semantics for Linear Logic

Ryan Tay

some date

a work in progress...

Contents

1 An introduction to linear logic 2
1.1 Connectives . 2
1.2 Inference rules . 3

2 Seely categories 8
2.1 Category-theoretic preliminaries: symmetric monoidal closed categories 8
2.2 Category-theoretic preliminaries: comonads and coKleisli categories 12
2.3 Modelling linear logic with Seely categories . 14

3 Phase semantics 18

Bibliography and References 19

1

1 An introduction to linear logic

When one gives up the law of excluded middle, one creates the space for a number of strange phenomena
to arise. Given any formula ϕ, we know that ϕ → ¬¬ϕ holds intuitionistically. That is, it can be proven
in a usual syntactic system for propositional (or first-order) logic without the use of the law of excluded
middle. The converse ¬¬ϕ → ϕ, however, is not intuitionistically valid; one must appeal to the law of
excluded middle or one of its equivalents to establish double negation elimination. As another example,
given formulae ϕ and ψ, the following three de Morgan’s laws

1. (¬ϕ ∧ ¬ψ) → ¬(ϕ ∨ ψ)

2. (¬ϕ ∨ ¬ψ) → ¬(ϕ ∧ ψ)

3. ¬(ϕ ∨ ψ) → (¬ϕ ∧ ¬ψ)

can all be proven intuitionistically. However, the remaining de Morgan’s law

4. ¬(ϕ ∧ ψ) → (¬ϕ ∨ ¬ψ)

is not intuitionistically valid. Furthermore, the formula (¬ϕ ∨ ψ) → (ϕ → ψ) is intuitionistically valid,
while the formula (ϕ → ψ) → (¬ϕ ∨ ψ) is not.

Must we settle for these asymmetries if we wish to have intuitionistic aspects in our logic?

1.1 Connectives

We will mainly concern ourselves with propositional linear logic, for there is already a stark enough
difference in the propositional fragments of linear logic in contrast to intuitionistic or classical logic.

Definition 1.1.1
Let P be a countable set of propositional constants. The set F of formulae of propositional linear logic
is generated by the grammar

F ::= P | P⊥ | 0 | ⊤ | ⊥ | 1 | F & F | F ⊕ F | F ⊗ F | F ` F | ?F | !F .

These constants and connectives are split into three different classifications.
The additive constants consist of 0 and ⊤, with 0 representing the additive falsity and ⊤ representing

the additive truth. The additive conjunction is & and is called with. The additive disjunction is ⊕ and
is called plus.

The multiplicative constants consist of ⊥ and 1, with ⊥ representing the multiplicative falsity and
1 representing the multiplicative truth. The symbol ⊗ is called tensor, and is to be interpreted as
multiplicative conjunction. The symbol ` is called par, and is to be interpreted as multiplicative
disjunction.

Finally, the symbols ? and ! make up the exponential class of connectives. We will later see that
these allow us to have an interaction between the additive and the multiplicative connectives. Much like
with real numbers, where we have the exponential law ab+c = ab · ac (whenever a ∕= 0), we will obtain,
for instance, an equivalence between ?(A&B) and (?A)⊗ (?B) for any formulae A and B.

We remark that negation of formulae was only defined on the propositional constants. Our syntax
for linear logic cannot make sense of (p & q)⊥ whenever p and q are propositional constants. Instead,
we define negation as a meta-operation on formulae.

Definition 1.1.2
We define the meta-operation (−)⊥ on formulae inductively as follows.

2

1. (p)⊥ := p⊥ for all propositional constants p.

2. (p⊥)⊥ := p for all propositional constants p.

3. ⊥⊥ := 1.

4. 1⊥ := ⊥.

5. 0⊥ := ⊤.

6. ⊤⊥ := 0.

7. If A and B are formulae of linear logic, then (A&B)⊥ := A⊥ ⊕B⊥.

8. If A and B are formulae of linear logic, then (A⊕B)⊥ := A⊥ &B⊥.

9. If A and B are formulae of linear logic, then (A⊗B)⊥ := A⊥ `B⊥.

10. If A and B are formulae of linear logic, then (A`B)⊥ := A⊥ ⊗B⊥.

11. If A is a formula of linear logic, then (?A)⊥ := !(A⊥).

12. If A is a formula of linear logic, then (!A)⊥ := ?(A⊥).

We also define A ⊸ B := A⊥ `B for any two formulae A and B.

The symbol ⊸ is called linear implication or lollipop.

Exercise 1.1.3
Show that (A⊥)⊥ = A for all formulae A.

1.2 Inference rules

We will adopt a sequent calculus approach for proofs in linear logic. Capital Latin letters A,B,C, . . .
will be used to denote individual formulae, whereas capital Greek letters Γ,∆,Θ, . . . will be used to
denote (possibly empty) sets of formulae. Those familiar with the sequent calculus would expect two
rules for each connective, for example

Γ, A ⊢ C,∆
&L

Γ, A&B ⊢ C,∆

Γ ⊢ A,∆ Γ ⊢ B,∆
&R

Γ ⊢ A&B,∆

Notice, however, that there are six connectives and four propositional constants, making for an expected
number of twenty inference rules if we had a left and right rule for each connective and constant.
While manageable, this is far too many inference rules for pedagogical purposes. Instead, we shall
identify the statement A ⊢ B with ⊢ A⊥, B. In general, Γ ⊢ ∆ is identified with ⊢ Γ⊥,∆, where
Γ⊥ := {A⊥ : A ∈ Γ }, recalling that (−)⊥ is a meta-operation. This makes all our contexts empty, and
we only need a single rule for each connective and constant for the introduction of that symbol into the
right-hand side of the turnstile. Henceforth, when we write

Γ

we mean that we can prove Γ from the empty context, i.e.

⊢ Γ

3

Let us start with the inference rules. The first is the identity rule, inspired from the rule A ⊢ A
from the sequent calculus.

id
A,A⊥

We will also adopt the exchange rule, so that the order of the formulas on either side of the turnstile
does not matter.

Γ, A,B,∆
ex

Γ, B,A,∆

We will often use this rule implicitly, for the sake of space.
The (infamous) cut rule will also be adopted.

Γ, A ∆, B
cut

Γ,∆

It can be shown that the calculus we are developing will allow for the omission of the cut rule.
We now move on to the additive rules. The additive conjunction rule is reminiscent of the ∧R rule

from the LK sequent calculus.

Γ, A Γ, B
&

Γ, A&B

The additive disjunction rules are reminiscent of the ∨R rules from the LK sequent calculus.

Γ, A
⊕0

Γ, A⊕B

Γ, A
⊕1

Γ, A⊕B

We will often not distinguish between the ⊕0 and the ⊕1 rule when writing down a proof involving the
additive disjunction rules.

The additive truth rule is inspired from the ⊤R rule from the LK sequent calculus.

⊤
Γ,⊤

In contrast, much like the LK sequent calculus having no ⊥R rule, we will have no inference rule for
the additive falsity 0. This does not mean that the constant 0 can never appear in proofs.

We will have a rule for each multiplicative symbol. The multiplicative conjunction rule is

Γ, A ∆, B
⊗

Γ,∆, A⊗B

Note the difference between the multiplicative conjunction rule and the additive conjunction rule. In-

tuitively, the inference Γ⊥, A ∆⊥, B
⊗

Γ⊥,∆⊥, A⊗B
says that from Γ ⊢ A and ∆ ⊢ B, we can conclude

Γ,∆ ⊢ A ⊗ B. It is perhaps most instructive to observe the case when Γ = ∆. We would have
Γ⊥, A Γ⊥, B

⊗
Γ⊥,Γ⊥, A⊗B

, whereas Γ⊥, A Γ⊥, B
&

Γ⊥, A&B
. That is, if Γ ⊢ A and Γ ⊢ B, we would need two

copies of Γ to prove A⊗B, whereas we would only need one copy of Γ to prove A&B.
The multiplicative disjunction rule is

Γ, A,B
`

Γ, A`B

4

Observe that, because ⊢ A,A⊥ for any formula A using the identity rule, the multiplicative disjunction
rule gives a law of excluded middle ⊢ A`A⊥.

The multiplicative truth rule only allows us to instantiat 1 from no other premises.

11

Unlike the additive false 0, we do have a multiplicative falsity rule.

Γ ⊥
Γ,⊥

We now move on to the exponential rules. Note that, so far, we have had no other structural rules
other than the exchange rule; we do not have the weakening rule or the contraction rule for arbitrary
formulae like in the LK sequent calculus. We will only have these structural rules for formulae with the
question mark as their main connective.

Γ wk
Γ, ?A

Γ, ?A, ?A
ctr

Γ, ?A

We have two more rules associated with exponentials, which are rather unique to linear logic. The
first is the dereliction rule, whose choice of name can be justified upon seeing the inference rule.

Γ, A
der

Γ, ?A

Finally, we have the promotion rule for introducing the ! symbol.

?Γ, A
prom

?Γ, !A

In the above inference rule, ?Γ := { ?B : B ∈ Γ }. We can only promote a formula A to !A when every
other formula on the same derivation line has ? as their main connective.

We collect all our rules below for ease of access.

id
A,A⊥

Γ, A,B,∆
ex

Γ, B,A,∆

Γ, A ∆, B
cut

Γ,∆

Γ, A Γ, B
&

Γ, A&B

Γ, A
⊕0

Γ, A⊕B

Γ, A
⊕1

Γ, A⊕B
⊤

Γ,⊤

Γ, A ∆, B
⊗

Γ,∆, A⊗B

Γ, A,B
`

Γ, A`B
11

Γ ⊥
Γ,⊥

Γ wk
Γ, ?A

Γ, ?A, ?A
ctr

Γ, ?A

Γ, A
der

Γ, ?A

?Γ, A
prom

?Γ, !A

5

We should see a few examples of derivations using these rules.

Example 1.2.1
Let us prove the modus ponens rule: A⊗ (A ⊸ B) ⊢ B.

To show this, first recall that A ⊸ B means A⊥ `B. So we have to show that A⊗ (A⊥ `B) ⊢ B.
Recalling that we only have a one-sided sequent calculus and that we interpret Γ ⊢ C as ⊢ Γ⊥, C, we
have to show that ⊢

A⊗ (A⊥ `B)

⊥
, B. Applying the (−)⊥ operation repeatedly, this is asking us to

show that ⊢ A⊥ ` (A⊗B⊥), B. Now that everything is in the syntactic language, we proceed with the
proof. We will show the uses of the exchange rules for this example and this example only.

id
A,A⊥

ex
A⊥, A

id
B,B⊥

⊗
A⊥, B,A⊗B⊥

ex
B,A⊥, A⊗B⊥

`
B,A⊥ ` (A⊗B⊥)

ex
A⊥ ` (A⊗B⊥), B

This completes the proof.

Exercise 1.2.2
Show that ⊢ A ⊸ A.

Example 1.2.3
Let us prove that (A&B)⊥ ⊢ A⊥ ⊕B⊥. This is one of de Morgan’s laws.

We need to show that ⊢ A&B,A⊥, B⊥.

id
A,A⊥

⊕1

A,A⊥ ⊕B⊥

id
B,B⊥

⊕0

B,A⊥ ⊕B⊥
&

A&B,A⊥ ⊕B⊥

In the proof above, we distinguished between the ⊕0 rule and the ⊕1 rule. We will not do this anymore
and simply write ⊕ for either rule from now onwards.

Let us now prove the converse direction to the de Morgan’s law above: A⊥ ⊕B⊥ ⊢ (A&B)⊥. This
time, we need to show that ⊢ (A⊥ ⊕ B⊥)⊥, (A & B)⊥, or equivalently, ⊢ A & B,A⊥ ⊕ B⊥. But this is
precisely the de Morgan’s law we have just established; we get this direction for free.

If A and B are formulae A ⊢ B and B ⊢ A, then we write A ⊣⊢ B and say that A and B are linearly
equivalent. The de Morgan’s law established in Example 1.2.3 can thus be succinctly written as the
linear equivalence (A&B)⊥ ⊣⊢ A⊥ ⊕B⊥.

Exercise 1.2.4
Show the remaining de Morgan’s laws:

1. (A⊕B)⊥ ⊣⊢ A⊥ &B⊥,

2. (A⊗B)⊥ ⊣⊢ A⊥ `B⊥, and

3. (A`B)⊥ ⊣⊢ A⊥ ⊗B⊥.

6

Example 1.2.5
Let us prove that !(A & B) ⊢ !A ⊗ !B, i.e. the exponential ! connective turns additive conjunction to
multiplicative conjunction.

We need to show that ⊢

!(A&B)

⊥
, !A⊗ !B. Fleshing this out, our goal is ⊢ ?(A⊥ ⊕B⊥), !A⊗ !B.

id
A,A⊥

⊕
A,A⊥ ⊕B⊥

der
A, ?(A⊥ ⊕B⊥)

prom
!A, ?(A⊥ ⊕B⊥)

id
B,B⊥

⊕
B,A⊥ ⊕B⊥

der
B, ?(A⊥ ⊕B⊥)

prom
!B, ?(A⊥ ⊕B⊥)

⊗
?(A⊥ ⊕B⊥), ?(A⊥ ⊕B⊥), !A⊗ !B

ctr
?(A⊥ ⊕B⊥), !A⊗ !B

This completes the proof.

Exercise 1.2.6
Show that !(A&B) ⊣⊢ !A⊗ !B. Also show that ?(A⊕B) ⊣⊢ ?A` ?B.

Exercise 1.2.7
Show that 1 ⊣⊢ !⊤ and that ⊥ ⊣⊢ ?0.

Exercise 1.2.8
Show that A⊥ ⊣⊢ A ⊸ ⊥.

7

2 Seely categories

Everyone loves a bit of category theory.

2.1 Category-theoretic preliminaries: symmetric monoidal closed categories

A symmetric monoidal category is precisely what its name suggests: we equip a category with a bifunctor
(−) ⊗ (−) which gives it the structure of a symmetric monoid. This will be the natural categorical
generalisation of equipping a set with a binary operation which turns it into a symmetric monoid. We
will, in a categorical sense, require that ⊗ is associative, symmetric, and has a unit.

Definition 2.1.1
Equip a category C with

1. a functor (−)⊗ (−) : C × C → C, called the tensor product,

2. an object 1 ∈ ob C, called the unit object,

3. a natural isomorphism a : ((−)⊗ (−))⊗ (−) → (−)⊗ ((−)⊗ (−)), called the associator,

4. a natural isomorphism λ : 1⊗ (−) → idC, called the left unitor,

5. a natural isomorphism ρ : (−)⊗ 1 → idC, called the right unitor,

6. and a natural isomorphism σ : (−)⊗(−) → (−)⊗(−), called the braiding/symmetry of the tensor
product.

This category C is said to be a symmetric monoidal category if, for all x, y, z, w ∈ ob C, the following
four diagrams in C commute.

1.
((x⊗ y)⊗ z)⊗ w

(x⊗ (y ⊗ z))⊗ w (x⊗ y)⊗ (z ⊗ w)

x⊗ ((y ⊗ z)⊗ w) x⊗ (y ⊗ (z ⊗ w))

ax,y,z⊗idw
∼=

ax⊗y,z,w

∼=

ax,y⊗z,w ∼= ax,y,z⊗w∼=

idx⊗ay,z,w

∼=

2.
(x⊗ 1)⊗ y x⊗ (1⊗ y)

x⊗ y

ax,1,y
∼=

ρx⊗idy

∼=
idx⊗λy

∼=

8

3.
(x⊗ y)⊗ z

(y ⊗ x)⊗ z x⊗ (y ⊗ z)

y ⊗ (x⊗ z) (y ⊗ z)⊗ x

y ⊗ (z ⊗ x)

σx,y⊗idz
∼=

ax,y,z
∼=

ay,x,z ∼= σx,y⊗z∼=

idy⊗σx,z

∼=
ay,z,x

∼=

4.
x⊗ y y ⊗ x

x⊗ y

σx,y

∼=

idx⊗y

∼= σy,x∼=

The assertions that the first three diagrams commute for all x, y, z, w ∈ ob C are respectively called the
pentagon identity, the triangle identity, and the hexagon identity.

In practice, one simply specifies the triple (C,⊗,1) when equipping a category C with a symmetric
monoidal structure.

We will soon become very familiar with the category Rel of relations. The objects of Rel are sets,
and morphisms A

R−→ B in Rel are precisely subsets R ⊆ A × B. It will turn out that this category
Rel can be equipped with a lot more than just a symmetric monoidal structure, but let us establish
this fact as a first stepping stone.

Example 2.1.2
Let Rel be the category of sets and relations between sets. Let us show that (Rel,×, {∗}) is a symmetric
monoidal category, where × denotes the usual cartesian product and {∗} denotes a singleton set.

We will only define the associator a : ((−) × (−)) × (−) → (−) × ((−) × (−)) and the left unitor
λ : {∗}× (−) → idRel, as the rest are similar.

For A,B,C ∈ obRel, define the morphism (A×B)× C
aA,B,C−−−−→ A× (B × C) to be the relation

aA,B,C :=

((x, y), z), (x, (y, z))

: x ∈ A, y ∈ B, z ∈ C

.

For A ∈ obRel, define the morphism {∗}×A
λA−−→ A to be the relation

λA :=

(∗, x), x

: x ∈ A

.

The verification that these, along with the appropriate definitions for the right unitor and the symmetry,
are natural isomorphisms satisfying the commuting diagrams in Definition 2.1.1 is straightforward.

Exercise 2.1.3
Show that the category Set with the usual cartesian product and any singleton set {∗} is a symmetric
monoidal category.

9

Exercise 2.1.4
Fix any field K and consider the category VectK of vector spaces over K. Let (−) ⊗K (−) : VectK ×
VectK → VectK denote the usual tensor product over K of vector spaces over K. Also recall that we
can view the field K as a vector space over itself. Show that (VectK ,⊗K ,K) is a symmetric monoidal
category.

Just as we can define a homomorphism between monoids, there is a canonical notion of a morphism
between symmetric monoidal categories: a symmetric monoidal functor. This is simply a functor
between symmetric monoidal categories which preserves the symmetric monoidal structure of the domain
category.

Definition 2.1.5
Let (C,⊗,1) and (D,⊕,0) be symmetric monoidal categories. A symmetric monoidal functor from
(C,⊗,1) to (D,⊕,0) consists of a functor F : C → D, a natural transformation µ : F (−) ⊕ F (−) →
F ((−) ⊗ (−)), and a morphism 0

µ−→ F1 making the following four diagrams in C commute for all
x, y, z ∈ ob C.

1.
(Fx⊕ Fy)⊕ Fz

F (x⊗ y)⊕ Fz Fx⊕ (Fy ⊕ Fz)

F ((x⊗ y)⊗ z) Fx⊕ F (y ⊗ z)

F (x⊗ (y ⊗ z))

µx,y⊕idFz
aDFx,Fy,Fz

∼=

µx⊗y,z idFx⊕µy,z

FaCx,y,z

∼=
µx,y⊗z

where aC and aD are the associators for (C,⊗,1) and (D,⊕,0) respectively.

2.

0⊕ Fx Fx

F1⊕ Fx F (1⊗ x)

λD
Fx

∼=

µ⊕idFx

µ1,x

FλC
x

∼=

where λC and λD are the left unitors for (C,⊗,1) and (D,⊕,0) respectively.

3.

Fx⊕ 0 Fx

Fx⊕ F1 F (x⊗ 1)

ρDFx

∼=

idFx⊕µ

µx,1

FρCx
∼=

where ρC and ρD are the right unitors for (C,⊗,1) and (D,⊕,0) respectively.

10

4.

Fx⊕ Fy Fy ⊕ Fx

F (x⊗ y) F (y ⊗ x)

σD
Fx,Fy

∼=

µx,y µy,x

FσC
x,y

∼=

where σC and σD are the symmetries for (C,⊗,1) and (D,⊕,0) respectively.

Note the abuse of notation by using the same letter µ for both the morphism 0
µ−→ 1 and the natural

transformation µ : F (−)⊕ F (−) → F ((−)⊗ (−)).
Recall that a cartesian closed category is a category C with all finite products such that the functor

(−)×y : C → C has a right adjoint (−)y : C → C. The category Set is cartesian closed, as we can perform
currying to identify functions f : A× B → C with functions f̄ : A → BC , where BC denotes the set of
all functions from C to B. We remark that this object BC is precisely the set homSet(C,B); for any
two B,C ∈ obSet, the category Set has another object BC which acts as the collection homSet(C,B)
of morphisms from C to B.

The notion of cartesian closedness is now adapted for a symmetric monoidal category (C,⊗,1), with
⊗ in place of ×.

Definition 2.1.6
A symmetric monoidal closed category is a symmetric monoidal category (C,⊗,1) equipped with a functor
(−) ⊸ (−) : Cop × C → C, called the internal-hom functor, such that, for each y ∈ ob C, the functor
(−)⊗ y : C → C is left adjoint to the functor y ⊸ (−) : C → C.

Example 2.1.7
We know (from Example 2.1.2) that Rel can be given the structure of a symmetric monoidal category.
Let us now equip it with an internal-hom functor to make it a symmetric monoidal closed category.

For A,B,C ∈ obRel, recall that a morphism A×B
R−→ C in Rel is simply a subset R ⊆ (A×B)×C.

Hence we have an isomorphism

homRel(A×B,C) homRel(A,B × C)

R

a, (b, c)

:

(a, b), c

∈ R

∼=

∈ ∈

So we can take B ⊸ C to be B × C. The verification that this isomorphism is natural in A and C
is routine work. Following on from Example 2.1.2, this equips Rel with the structure of a symmetric
monoidal closed category.

Exercise 2.1.8
Let C be a cartesian closed category and let 1 denote the terminal object of C. Show that

C,×, 1, (−)(−)

is a symmetric monoidal closed category.

Exercise 2.1.9
Fix any field K and consider the category fdVectK of finite-dimensional vector spaces over K. Recall
also that the field K itself can be viewed as a 1-dimensional vector space over K. Let ⊗K denote the
usual tensor product over K of vector spaces over K. Let [−,−] : fdVectopK × fdVectK → fdVectK be

11

the functor such that [V,W] is the K-vector space of all linear maps from V to W , whenever V,W ∈
ob fdVectK .

Show that fdVectK , together with ⊗K , K, and [−,−], is a symmetric monoidal closed category,
eventhough fdVectK is not cartesian closed.

Definition 2.1.10
A ∗-autonomous category is a symmetric monoidal closed category (C,⊗,1,⊸) equipped with a dualising
object ⊥ ∈ ob C such that, for all x ∈ ob C, the canonical morphism x

∂x−→ (x ⊸ ⊥) ⊸ ⊥ below is an
isomorphism,

idx⊸⊥ homC(x ⊸ ⊥, x ⊸ ⊥) homC((x ⊸ ⊥)⊗ x,⊥)

homC(x⊗ (x ⊸ ⊥),⊥)

∂x homC(x, (x ⊸ ⊥) ⊸ ⊥)

∈
(−)⊗x ⊣ x⊸(−)

∼=

(−)◦σx,x⊸⊥∼=

(−)⊗x ⊣ x⊸(−)∼=

∈

where σ : (−)⊗ (−) → (−)⊗ (−) is the symmetry of (C,⊗,1).

Example 2.1.11
We know (from Example 2.1.7) that Rel can be given the structure of a symmetric monoidal closed
category. Let us now show that it can be given the structure of a ∗-autonomous category.

Following on from Example 2.1.7, we take any singleton set {∗} as the dualising object. The diagram
chase in Definition 2.1.10 then yields that the canonical morphism A

∂A−−→ (A× {∗})× {∗} is simply the
relation

∂A =

x, ((x, ∗), ∗)

: x ∈ A

,

which is clearly an isomorphism for any A ∈ obRel.

2.2 Category-theoretic preliminaries: comonads and coKleisli categories

Definition 2.2.1
Fix a category C. A comonad on C is consists of a functor T : C → C and natural transformations
ε : T → idC and δ : T → TT making the following diagrams

T TT T T TT

T TT TTT

εT T ε δ

δ δT
idC

δ
idC

T δ

in the functor category [C, C] commute.

The following Exercise 2.2.2 shows that any adjoint pair of functors give rise to a comonad.

12

Exercise 2.2.2

Given an adjunction C D
F

G

⊣ with unit η : idC → GF and counit ε : FG → idD, show that the triple

(FG, ε, FηG) constitute a comonad on D.

Definition 2.2.3
The coKleisli category for a comonad (T, ε, δ) on a category C is the category CT consisting of the
following.

1. We declare ob CT := ob C.

2. For each A,B ∈ ob CT , we declare homCT (A,B) := homC(TA,B).

3. Given two morphisms A
f⇝ B

g⇝ C in CT , the composite morphism A
gf⇝ C in CT is defined to be

the composite morphism

TA TTA TB C
δA Tf g

in C.

4. For each A ∈ ob CT , the identity morphism A idA in CT is the morphism TA
εA−→ A in C.

The use of squiggly arrows A
f⇝ B for morphisms in the coKleisli category are for cosmetic reasons;

they are there to remind us that when we draw an arrow A
f⇝ B in the coKleisli category, we really

mean an arrow A
f−→ TB in the base category.

If we were really strict about notation, we should write CT for the coKleisli category for a comonad
T = (T, ε, δ) on a category C; it could be the case that two different comonads have the same underlying
endofunctor.

The coKleisi category is one of those rare instances where the fact that it is a category is not actually
that obvious.

Exercise 2.2.4
Let (T, ε, δ) be a comonad on a category C, and let CT denote the coKleisli category for this comonad.
Show that CT is indeed a category, i.e. show that composition in CT (as defined in Definition 2.2.3)

is associative and that composing any morphism A
f⇝ B in CT with either of the identity morphisms

A idA or B idB in CT yield f .

Recall (from Exercise 2.2.2) that any adjunction gives rise to a comonad. The following Exercise 2.2.5
shows that any comonad stems from an adjunction in sense of Exercise 2.2.2.

Exercise 2.2.5
Let (T, ε, δ) be a comonad on a category C, and let CT denote the coKleisli category for this comonad.

Find an adjoint pair of functors CT C
F

G

⊣ with unit η̃ and counit ε̃ such that (FG, ε̃, F η̃G) = (T, ε, δ).

13

2.3 Modelling linear logic with Seely categories

Definition 2.3.1
A Seely category is a ∗-autonomous category (L,⊗,1,⊸,⊥) which has all finite products with terminal
object ⊤ ∈ obL, equipped with a comonad (!, ε, δ) on L, an isomorphism 1

µ−→∼= !⊤, and a natural

isomorphism µ : !(−) ⊗ !(−) → !((−)× (−)) such that all of the following hold.

1. The triple (L,×,⊤) is a symmetric monoidal category, where × denotes the categorical product in
L.

2. The pair (!, µ) is a symmetric monoidal functor from (L,×,⊤) to (L,⊗,1).

3. For each x, y ∈ obL, the following diagram

!x⊗ !y !(x× y)

!!(x× y)

!!x⊗ !!y !(!x× !y)

µx,y

∼=

δx⊗δy

δx×y

!(!π1, !π2)

µ!x,!y

∼=

in L commutes, where A
π1←− A×B

π2−→ B are the projections associated with the product A×B.

We note the abuse of notation by using the same letter µ to denote the isomorphism 1
µ−→∼= !⊤ as

well as the natural isomorphism µ : !(−) ⊗ !(−) → !((−)× (−)). These isomorphisms denoted by µ
are known as the Seely isomorphisms.

We should see an example of a Seely category. We have been working with the category Rel of
sets and relations so far, making it into a ∗-autonomous category (cf. Example 2.1.11). We will now
upgrade Rel to a Seely category. The endofunctor of the comonad will be the finite multiset functor,
which we define below.

A finite multiset on a set S is a function m : S → N such that m(m−1(N \ {0})) is a finite subset of
N. We write

m =

 x1, . . . , x1
n1 copies of x1

, . . . , xk, . . . , xk
nk copies of xk

for the finite multiset m on a set S ⊇ {x1, . . . , xk} with m(xi) = ni for all 1 ≤ i ≤ k. In this case, we
abuse notation and say that x1, . . . , xk ∈ m and that |m| = n1 + · · ·+ nk.

For instance, if S = {x, y, z}, we write m = [x, x, x, y] to denote the finite multiset m : S → Y where
m(x) = 3, m(y) = 1, and m(z) = 0, and we say that x, y ∈ m, z /∈ m, and |m| = 4. We do not
distinguish between permutations of elements in a finite multiset m, so m = [x, x, x, y] = [x, x, y, x] =
[x, y, x, x] = [y, x, x, x]. The notation [] refers to the empty finite mutliset, i.e. the multiset which sends
all elements of S to 0.

Given finite multisets m and m′ on a set S, we define m +m′ to be the finite multiset on S given
by (m +m′)(x) := m(x) +m′(x) for all x ∈ S. For example, if m = [x, x, x, y] and m′ = [x, y, z], then
m+m′ = [x, x, x, x, y, y, z].

14

We use Mfin(S) to denote the set of all finite multisets on a set S. Defining

Mfin(A
R−→ B)

:=

(m,m′) ∈ Mfin(A)×Mfin(B) : |m| = |m′| and there exist permutations m = [x1, . . . xk]

and m′ = [x′1, . . . , x
′
k] such that xiRx′i for all 1 ≤ i ≤ k

for relations R ⊆ A×B makes Mfin into an endofunctor on Rel.

Example 2.3.2
We know (from Example 2.1.11) that Rel can be given the structure of a ∗-autonomous category. Let
us now show that Rel can be given the structure of a Seely category.

We will take ! := Mfin for the endofunctor of our comonad. For a set A define the morphism
Mfin(A)

εA−→ A in Rel to be the relation

εA :=

([x], x) : x ∈ A

.

Furthermore, we define the morphism Mfin(A)
δA−→ Mfin(Mfin(A)) in Rel to be the relation

δA :=

(m, [m1, . . . ,mk]) ∈ Mfin(A)×Mfin

Mfin(A)

: m = m1 + · · ·+mk

.

These make ε : Mfin → idRel and δ : Mfin → MfinMfin into natural transformations, and it is elementary
to check that the diagrams

[x1, . . . , xk] [[x1, . . . , xk]]

Mfin(A) MfinMfin(A)

Mfin(A)

[x1, . . . , xk]

∈ ∈

εMfin(A)

idMfin(A)

δA

∈

[[x1], . . . , [xk]] [x1, . . . , xk]

MfinMfin(A) Mfin(A)

Mfin(A)

[x1, . . . , xk]

∈ ∈

MfinεA

δA
idMfin(A)

∈

15

k
i=1(

ni
j=1mi,j) [m1,1, . . . ,m1,n1 , . . . ,mk,1, . . . ,mk,nk

]

Mfin(A) MfinMfin(A)

MfinMfin(A) MfinMfinMfin(A)

n1
j=1m1,j , . . . ,

nk
j=1mk,j

[[m1,1, . . . ,m1,n1], . . . , [mk,1, . . . ,mk,nk

]]

∈ ∈

δA

δA δMfin(A)

MfinδA

∈ ∈

in Rel commute for all sets A, making (Mfin, ε, δ) a comonad on Rel.
Recall that the categorical product in Rel is the set-theoretic disjoint union ⊔, so the terminal object

in Rel is the empty set ∅. This makes (Rel,⊔,∅) a symmetric monoidal category. Then there is an
obvious isomorphism {∗} µ−→∼= Mfin(∅) in Rel, namely µ :=

∗, []

. Also, for sets A and B which we

may assume without loss of generality to be disjoint, we define the morphism Mfin(A)×Mfin(B)
µA,B−−−→

Mfin(A ⊔B) in Rel to be the relation

µA,B :=

(m′,m′′),m

∈

Mfin(A)×Mfin(B)

×Mfin(A ⊔B) : m′ +m′′ = m

.

Observe that this µ : Mfin(−)×Mfin(−) → Mfin((−) ⊔ (−)) is a natural isomorphism since A and B
are disjoint: any finite multiset on A ⊔B can be viewed as a finite multiset on A together with a finite
multiset on B.

It is then easy to check that (Mfin, µ) is a symmetric monoidal functor from (Rel,×, {∗}) to
(Rel,⊔,∅). Finally, for all sets A and B, which we may again assume without loss of generality
to be disjoint, the diagram

Mfin(A)×Mfin(B) Mfin(A ⊔B)

MfinMfin(A ⊔B)

Mfin

Mfin(A)

×Mfin

Mfin(B)

Mfin

Mfin(A) ⊔Mfin(B)

µA,B

δA×δB

δA⊔B

Mfin

(MfinπA)∪(MfinπB)

µMfin(A),Mfin(B)

in Rel commutes, where A
πA←−− A⊔B

πB−−→ B are the projections associated with the categorical product
A⊔B in Rel, i.e. πA := { (x, x) : x ∈ A } ⊆ (A⊔B)×A and πB := { (y, y) : y ∈ B } ⊆ (A⊔B)×B. The
diagonal of this commuting square relates a pair (m′,m′′) ∈ Mfin(A)×Mfin(B) to (some permutation
of) a multiset [m1, . . . ,mk] ∈ Mfin

Mfin(A) ⊔Mfin(B)

if and only if there is some i ∈ {1, . . . , k} such

that m′ = m1 + . . .mi and m′′ = mi+1 + · · ·+mk.
All of the above makes Rel into a Seely category.

We now start to model linear logic with Seely categories. We observe that the structure of a
Seely category already gives us canonical ways to define the interpretations of many connectives. The
remaining connectives will be defined via their duality properties. For instance, we will interpret A⊕B
as (A⊥ &B⊥)⊥.

16

Definition 2.3.3
Fix a Seely category L. We define the interpretation A of a formula A inductively as follows. For
propositional constants p, we are free to choose an assignment p ∈ obL.

1. If A ≡ 1, then 1 is the unit of the tensor product in L from the ∗-autonomous structure of L.

2. If A ≡ ⊥, then ⊥ is the dualising object in L from the ∗-autonomous structure of L.

3. If A ≡ ⊤, then ⊤ is the terminal object in L.

4. If A ≡ B ⊸ C, then B ⊸ C := B ⊸ C, where the ⊸ on the right-hand side is the
internal-hom functor from the ∗-autonomous structure of L.

5. If A ≡ 0, then 0 := ⊤ ⊸ ⊥.

6. If A ≡ B & C, then B & C := B × C, where × is the categorical product in L.

7. If A ≡ B ⊕ C, then B ⊕ C := ((B ⊸ ⊥) & (C ⊸ ⊥)) ⊸ ⊥.

8. If A ≡ B⊗C, then B⊗C := B⊗C, where the ⊗ on the right-hand side is the tensor product
from the ∗-autonomous structure of L.

9. If A ≡ B ` C, then B ` C := ((B ⊸ ⊥)⊗ (C ⊸ ⊥)) ⊸ ⊥.

10. If A ≡ !B, then !B := !B, where the ! on the right-hand side is the endofunctor in the comonad
on L.

11. If A ≡ ?B, then ?A := (!(B ⊸ ⊥)) ⊸ ⊥.

If Seely categories are to be any good as a model of linear logic, we should at least have a soundness
theorem for them.

Theorem 2.3.4 (Soundness for linear equivalences)
#??

Proof. I don’t actually know if this is true.
#??

17

3 Phase semantics

18

Bibliography and References

Abishek De and Charles Grellois. Linear logic. Lectures for the Midlands Graduate School 2025 at the
University of Sheffield, 2025.
URL: https://sites.google.com/view/abhishekde/mgs-25.

Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts in Mathematics.
Springer-Verlag New York, Inc., second edition, 1978.
DOI: https://doi.org/10.1007/978-1-4757-4721-8.

Michele Pagani. Sequent calculus, part I: formulas and rules. Lecture for the Linear Logic Winter
School 2022 at the Centre International de Rencontres Mathématiques, 2022.
URL: https://conferences.cirm-math.fr/2685.html.

Christine Tasson. The relational model of linear logic. Lecture for the Linear Logic Winter School
2022 at the Centre International de Rencontres Mathématiques, 2022.
URL: https://conferences.cirm-math.fr/2685.html.

19

https://sites.google.com/view/abhishekde/mgs-25
https://doi.org/10.1007/978-1-4757-4721-8
https://conferences.cirm-math.fr/2685.html
https://conferences.cirm-math.fr/2685.html

