Solutions to exercises in Bart Jacobs’s book “Introduction to
Coalgebra: Towards Mathematics of States and Observation”

Ryan Tay

some date very far into the future, if ever

a work in progress... draft version 17 September 2025
These are my solutions to all the labelled exercises in Jacobs (2017). This document does not stand
on its own; it is meant to supplement the book.

Contents

1 Motivation 2
1.1 Naturalness of Coalgebraic Representations 2
1.2 The Power of Coinduction 4
1.3 Generality of Temporal Logic of Coalgebras 14
1.4 Abstractness of Coalgebraic Notions, 17

2 Coalgebras of Polynomial Functors 21
2.1 Constructions on Sets 21
2.2 Polynomial Functors and Their Coalgebras. 22
2.3 Final Coalgebras 23
2.4 Algebras 24
2.5 Adjunctions, Cofree Coalgebras, Behaviour-Realisation 25

3 Bisimulations 27
3.1 Relation Lifting, Bisimulations and Congruences 27
3.2 Properties of Bisimulations 27
3.3 Bisimulations as Spans and Cospans 28
3.4 Bisimulations and the Coinduction Proof Principle 28
3.5 Process Semantics 29

Bibliography and References 30

1 Motivation

1.1 Naturalness of Coalgebraic Representations

Exercise 1.1.1

1. Prove that the composition operation ; as defined for coalgebras S — {L} U S is associative, i.e.
satisfies s1; (s2; 83) = (815 S2); 83, for all statements s1,s2,83: S — {L}US.
Define a statement skip: S — {L} U S which is a unit for composition ; i.e. which satisfies
(skip; s) = s = (s; skip), for all s: S — {L}US.

2. Do the same for ; defined on coalgebras S — {L} U S U (S x E).
(In both cases, statements with an associative composition operation and a unit element form a
monoid.)

Solution.

1. Recall that the composition operation ; was defined as follows:

L, if s(z)
t(z") if s(x)

1
s;t::)\azes.{ K
x

€8,

for coalgebras s,t: S — {1} US. Fix any three coalgebras s, s2,s3: S — {L}US. Then

1, if s1(z) = L,
51 (523 83) = Aw € 5. {(32; s3)(a'), if si(z) =2’ €S,
s {J_, if either s1(z) = L, or both s1(z) =2’ € S and sa(2’) = L,
s3(2”), if s1(x) =2' € S and so(2') = 2" € S,
Cwes {J_, if (s15 82)(x) = L,
sg(a), if (s1; s2)(x) =2" €S,

= (s1; s2); S3.

So the composition operation ; is associative.
The coalgebra skip: S — {L}US defined by skip(x) := z, for all z € S, satisfies (skip; s) = s =
(s; skip) for all coalgebras s: S — {L}US.

2. Now we consider the composition operation ; defined as follows:
1, if s(x)

s;ti=AreS qt(x), if s(x) €S,
(a,e), if s(z)=(2',e) € S X E,

€L,
{E/

for coalgebras s,t: S — {L}USU(S x E). Fix any three coalgebras sy, s2,s3: {L}USU(S x E).

Then
1, if s1(x) =L,
s1; (s2383) = Ax € 5.4 (825 s3)(2'), ifsi(x)=12" €85,
(2, e), if s1(z) = (2/,e) € S x E,

;

1, if either s1(z) = L, or both s1(x) =2’ € S and sy(2) = L,
sg(2”), if s1(x) =2’ € S and sqo(2’) = 2" € S,
(”,e), if si(z) =2' € S and s2(2) = (2”,e) € S X E,
(@', e), ifsl(x)z(a:',e)eSxE,
1, if (s1; s2)(x) =
=z € 5.4 s3(2”), if (s1; s2)(x) —x”eS
L(:B”,e), if (s1;82)(x) = (2",e) € S X E,

= (s1; 52); S3-

=)\xeS.

So this composition operation ; is also associative.

Now define the coalgebra skip: S — {L}USU (S x E) by skip(z) = z, for all x € S. Then we
have (skip; s) = s = (s; skip) for all coalgebras s: S — {L} USU (S x E). O

Exercise 1.1.2
Define also a composition monoid (skip, ;) for coalgebras S — P(S).

Solution. For coalgebras s,t: S — P(S), define

s;t:)\xES.(U t(y))
yes(z)

Then, for coalgebras si, s2,s3: .S — P(S5), we have

s1; (s2383) =Av eS| [J (s2; 83)(y))

y€si(z)

yesi(z) 2682(:!})

=Axr € S. U U)

=Xz eS. U 53(,2))
)(@)

z€(s1;82)(x

= (515 52); S3-

Furthermore, defining skip: S — P(S) by skip(x) := {x} for all 2 € S, we have

(skip;s)/\:EES.(U 5(9))

yEskip(z)

—)\a:ES.(U s(y))
ye{z}

= Az € S.s(x)

=S

and

(s; skip) = Az € S. U skip(y)

y€s(z)
=X eb. U {y}
y€s(z)
= Az € S.s(x)

= S.

1.2 The Power of Coinduction

Exercise 1.2.1
Compute the nextdec-behaviour of% €[0,1) as in Example 1.2.2.

Solution. We first recall all of the following functions.

1. The final coalgebra next: {0,...,9}> — {L} U ({0,...,9} x {0,...,9}*) is defined by

() 1, if o is the empty sequence,
next(o) ==
(d,o’), if o has head d € {0,...,9} and tail ¢’ € {0,...,9}*,ie. 0 =d -0,

for all (finite or infinite) sequences o € {0,...,9}>.

2. The coalgebra nextdec: [0,1) — {1} U ({0,...,9} x [0,1)) is defined by

4, if r =0,

nextdec(r) :=
dects) {(d,mr_d), ifd<10r <d+1andde{0,....9}

for all r € [0, 1).

3. The function behpeytdec: [0,1) — {0,...,9}° is the unique function making
ld{J_} U (ld{O ,,,,, 9} ><behnextdec))
{L}U ({0,...,9} x [0,1)) ---"==-----2222iooTiooy » {LYU ({0,...,9} x {0,...,9}>)
nextdec/[N[next
[0, 1) = m e s {0,...,9}%

3!behnextdec

commute.

We wish to compute behnextdec(%). We see that

1 (/. . 1
behnextdec <?> = next ((1(1{1_} U (ld{O,...,Q} X behnextdeC)) (nEXtdec<?>>>
= next”! (id{J_} U (idgo,....01 ¥ behnextdec)) 1 3
EARRS]) 7

= next ! < (1, behnextdec <%> > >
3
=1 behnextdec (?) .
Continuing in this fashion,
1 3
behnextdec (?) =1- behnextdec (?)
=1-(4-beh 2
= €lpextdec =
1- <4 : <2 - behpextdec <§> >>
7
4
(1 (2 (sobetren(7))))
5
(1 (2 (5 (5rmmnse (7))
7
(e (2 (5 (o0 (7ovenmnsn(7))))))

Therefore behnextdec (1) = (1,4,2,8,5,7,1,4,2,8,5,7,1,4,2,8,5,7,...).

I

2.
2.

8
8

O

Exercise 1.2.2
Formulate appropriate rules for the function odds: A — A in analogy with the rules (1.7) for evens.

Solution. We recall that, for a sequence o = (ag,a1,as,a3,...) € A, the function odds satisfies
odds(o) = (a1, as,as,...), and analogously if o is a finite sequence. The rules we want odds to satisfy
are:

_or
odds(o) 4

i.e. odds should send the empty sequence to the empty sequence;

oo o 4
odds(o) /4

i.e. odds should send a singleton sequence (a) to the empty sequence; and

!
a a
o — o o — o

odds(o) <, odds(d”)

ie. ifo=a-d -0 € A, where a,a’ € A, then odds(c) = a’ - odds(c”). O

Exercise 1.2.3
Use coinduction to define the empty sequence () € A* as a map {L} — A>.

Fix an element a € A, and similarly define the infinite sequence a: {L} = A consisting of only
as.

Solution. We recall that the final coalgebra next: A — {1} U (A x A*) is defined by

t(0) 1, if o is the empty sequence,
next(o) ==
(a,0’), if o has head a € A and tail ' € A® ie. 0 =a-0’,

for all (finite or infinite) sequences o € A°.
For the coalgebra ¢1: {L} — { L}U(Ax{L}) defined by ¢1(L) := L, the unique function beh,, : { L} —
A% making

{LIUAX{L}) s s {L}U (A x A%)
{J-} ““““““““ 3 ‘!B;}L—l —————————————— > A

commute satisfies beh,, (L) = ().
For the coalgebra c,: {L} — {L} U (A x {L}) defined by c¢,(L) := (a,L), the unique function
behg, : {L} — A* making

{L}U(Ax{L}) ——--=-7---mmmmmm=- » {L}U (A x A®)
ca[= | next
{1} T 3mehe, y A
commute satisfies beh,, (L) = @ = (a,a,a,...). O

Exercise 1.2.4
Compute the outcome of merge({ag, a1, az), (bo, b1,b2,bs)).

Solution. Recall that we defined the coalgebra m: A® x A® — {L} U (A x (A>® x A>)) by

1, if 0 A and 7 A,
m(o,7) =< (a,(0,7')), ifo A and 7% 7/,
(a,(1,0"), ifo o,

for all 0,7 € A, and that merge: A® x A* — A is the unique function making

idg 1y U (idaxmerge)

{L}U (A X (A® X A®)) —-o-mmiem oo » {L}U (A x A®)
m)[NTnext
AOO X AOO _______________ é!_n;e_réé ______________) AOO

commute. Then

merge((ag, a1, az), (by, b1, b2, b3)) = next_l((id{l} U (idg x merge))(m((ao,al,@), <b0,bl,b2,b3>)))

= next_l((id{l} U (ida x merge))((ao, ((bo, b1, b2, bs), <a1,a2>))))

= next ! ((ao, merge((bg, b1, ba, bs), <a1,02>)))
= a - merge((bo, bl, bg, b3>, <a1, a2>),
and so on. Eventually, we obtain merge({ao, a1, as2), (bo, b1, b2, b3)) = (ao, bo, a1, b1, az, b2, b3). O

Exercise 1.2.5
Is the merge operation associative, i.e. is merge(o, merge(T, p)) the same as merge(merge(o,), p)? Give
a proof or a counterexample. Is there a neutral element for merge?

Solution. The merge operation is not associative:
merge((a), merge((b), (c)) = merge({a), (b, c))
- <aa ba C>,
whereas
merge(merge((a), (b)), (c)) = merge((a, b), (c))
- <a’7 C, b>a

for all a,b,c € A.
The neutral element for merge is the empty sequence: for any o € A*, we have merge(o, () =
merge((),0) = 0. O

Exercise 1.2.6
Show how to define an alternative merge function which alternatingly takes two elements from its argu-
ment sequences.

Solution. We will define a coalgebra mg: A x A® — {1} U (A x (A*° x A*)) so that the desired
merge function is the unique function merge,: A x A — A making

idg iy U (idaxmergey)

{L}U(A X (A% x A®)) ——--2cm—mmm i n 2o »y {L}U (A x A®)
mo 2 | next
A® X A® y A
Jlmerge,

commute. Asa motivating example, the desired merge of two infinite streams (ag, a1, ...) and (bg, b1, ...)
should be

merges ({ag, a1, az,as,...), (by,b1,b2,bs,...)) = (ag, a1, bo, b1, az,as,ba, bz, ...).
As the diagram above commutes, we would require
mergeg(mg((ag,al,ag,ag, o)y (bo, b1, b2, b3, . .. >)) = (ao, (a1,bo, b1,as,as,be,bs, ...))
and so my should be defined to satisfy
ma({(ag, a1, az,as,...), (by,b1,ba,b3,...)) = (ag, ((a1,bo,as,ba,...), (b1,a2,b3,ay,...))

Dealing with edge cases separately leads us to the following definition: we define the coalgebra
ma: AP x A® — {L} U (A x (A® x A%)) as follows.

1. The function my sends the pair ({), ()) to L, i.e.
ma((), () = L.

2. If 7 € A% is a non-empty sequence, say 7 — 7' for some 7/ € A® and a € A, then

3. If o = (a) for some a € A, then

for all 7 € A*.
4. If 0 € A has at least length 2, say o — o’ s " for some o',0" € A*® and a,d’ € A, then
mo(o,7) = (a, (merge(odds(c), evens(7)), merge(odds(T),evens(a”))))

for all 7 € A*.
Now let merge,: A x A>*® — A% be the unique function which makes

idg1y U (idaxmergey)

{L}U (A X (A® x A®)) —---2mmmmm o220 » {L} U (A x A®)
m;["Wnext
AOO X AOO _______________H_h‘_n_e;g_e; ______________) AOO

commute. Fix any o,7 € A®. We argue by cases on (o,7) that this function merge, is the desired
merge function.

1. If o =7 = (), then mergey((), ()) = ().
2. If o = () and 7 is a non-empty sequence, say 7 = a - 7’ for some a € A and 7/ € A, then
merge,((),7) = a - merge,((), 7).
Thus mergey((),7) = 7.

3. If 0 = (a) for some a € A, then

mergey((a),7) = a - mergey((),7)

=a-T.
4. If o =a-a’ - 0" for some a,a’ € A and 0” € A, then
merge, (0, 7) = a - merge (merge(odds(a), evens(7)), merge (odds(7), evens(a”)))
= a - merge, (merge(a’ -odds(c”), evens(7)), merge (odds(7), evens(a”)))
=a-ad - merge, <merge(odds(merge(a' -odds(c0”), evens(7))),

evens(merge(odds(7), evens((f”)))))

8

merge (odds(merge(odds(7), evens(c”))),
odds(merge(evens(7), odds(a”)))))
=a-d - merge, (merge(evens(T), odds(7)), merge(evens(c”), OddS(U”)))
=a-a -mergey(r,0”"),
as desired. =
Exercise 1.2.7

1. Define three functions ex;: A — A, for i = 0,1,2, which extract the elements at positions
3n + 1.

2. Define merge3: A x A® x A® — A satisfying the equation merge3(exq(o),ex;(0),exa(0)) =0,
for all o0 € A°.

Solution.

1. Define g, c1,c9: A — {L} U (A x A™®) as follows:

¢

1, if o =),
co(o) =< (a,()) if o =(a) or o = (a,d’) for some a,a’ € A,
(a,0), ifo o LINPVLIN o,
1, if 0 = () or 0 = (a) for some a € A,
ci(o) =< (d,() if o= (a,d) for some a,a’ € A,
K(a’,o"”), ifai>0’a—/>a”a—u>a”’,
{L, if o0 = (), or 0 = (a), or 0 = (a,d’) for some a,a’ € A,
ca(0) = e a g, d g d
(@ 0", ifo—=d —d"—o".

Then, for ¢ € {0,1,2}, the function ex;: A* — A is the unique function making

{L}U(A X A®) —-omimt » {L} U (A x A®)
ci 2 | next
AOO ________________ 3 _'éx_z _______________) AOO

commute.

2. Define the coalgebra mg: A® x A® x A® — {1} U (A x (A® x A® x A®)) by

J—> ifa‘:T:p:O’
a,((),(),p)), ifo=7=() andp 2 p/ for some a € A and p € A,
a,((),p, 7)), ifo= () andr 2 7/ for some a € A and 7/ € A®,

ms(o, T, p) = E
(

a,(t,p,0"), ifo % o’ for some a € A and o’ € A®.

Then we let merge3: A x A% x A — A* be the unique function making

idg 1y U (idaxmerge3)

{L}U (A X (A%® x A® x A®)) —---2ciommlooool »{L}U (A x A%)
ms3 2 | next
A% X AP X AP —ommmme 3 _'r_n:_‘;g_e_:’z “““““““ > A%

commute.

Let us prove that merge3(exg(o),exi(0),exa(0)) = o for all 0 € A, by coinduction. Consider
the function f: A% — A% x A% x A defined by f(c) == (exo(c), ex1(0),exz(0)) for all o € A>.
We wish to show that merge3 o f = id geo.

idf1y U (idaxmerge3)

{L}U (A x (A® x A® x A*>))
id{J_} U (idaxf)

(L} U (A x A4%)
{J_} U (A X Aoo) m3 = | next

next | = AOO X Aoo X Aoo Aoo
merge3
/

Let us first show that the left square commutes. It certainly commutes when we chase the empty
sequence: (mgo f)(()) = L = ((idg1yU(ida x f)) onext)(()). If o0 € A* is a non-empty sequence,

AOO

say o — o' for some a € A and o’ € A%, then we have

|
—e
[N
—~
-
-
C
=
[oN
b
3
~ S
~
SN—r
@)
>
[¢]
X
+
~—
—~

where the second-to-last equality can also be proven by coinduction. Therefore the outer square
commutes, and so

next o (merge3 o f) = ((idgyy U (ida x (merge3 o f))) o next.
The finality of the coalgebra next: A* — {L} U (A x A%°) now yields merge3 o f = id ge. O

Exercise 1.2.8
Consider the sequential composition function comp: A® x A® — A for sequences, described by the
three rules:

o7 T o/ 57
comp(o, 7) 7> comp(o, 7) = comp(o, ')

a /
g — 0

comp(o,7) = comp(o’, 7)

10

1. Show by coinduction that the empty sequence () = next (L) € A is a unit element for comp,
i.e. that comp((),0) = o = comp(o, ()).

2. Prove also by coinduction that comp is associative, and thus that sequences carry a monoid struc-
ture.

Solution.
1. Let f: A® — A be defined by f(o) := comp((), o). We will show that the diagram

id{i} U (idaxf)

{1} U (A x A%) {1} U (A x A%)

next)[\N "Inext

A 7 A

commutes, which would yield f = id e by the finality of the coalgebra next.

First, we chase the empty sequence from the bottom left. We see that

(next o £)({)) = next(comp({), ()))

— next(())
=1,

the first rule for comp, and

((idg1y U (ida x f)) o next)(() (ld{u U (ida x f)) (L)

Now if 0 € A® is a non-empty sequence, say o — o’ for some a € A and o’ € A, we see that

(next o f)(o) = next(comp({),a - c"))
= (a,comp((),0”))
= (a, f(o")),

by the second rule for comp and the definition of f, and

((id{J_} U (ida x f)) o next) (o) = ((id{l} U (idg x f)) ((a,a’))
= (a, f(0")).

Thus nexto f = (idg 3 U (ida x f)) o next. This proves that comp((),) = o for all o € A>.

We now show the other equality, that comp(o, ()) = o for all o € A%, we will show that the
function g: A> — A* defined by g(o) := comp(o, ()) for all ¢ € A also satisfies

nextog = (id{l} U (ida x g)) o next.

That (nextog)(L) = ((id{_]_} U (ida x g)) onext)(.L) is the same as with f. Now if o € A> is such
that o % ¢’ for some a € A and ¢/ € A®, we see that

(next o g)(o) = next(comp(a - o', ())

11

= (a,comp(d”, ()))
= (a,9(0")),

by the third rule for comp and the definition of g, and
((id{l} U (idg x g)) o next) (o) = ((ld{J_} U (idg x g))) ((a, 0'/))
= (a,9(d")).
Therefore g = id g, i.e. comp(o, ()) = o for all 0 € A™.

2. We will define a coalgebra c¢: A x A® x A® — {L} U (A x (A® x A>® x A*)) such that the
functions h, k: A% x A® x A — A given by
h(o, T, p) = comp(o,comp(T,p)) and
k(o, 7, p) := comp(comp(o,7),),

for all o, 7, p € A, are both coalgebra homomorphisms from ¢ to next.

id{J_} U (ida xh)

—

{L}U(A % (A® x A® x A®)) {L}U (A x A®)

_/

id{J_} U (id4 xk)

c 2 | next
///_h\
A® x A® x A \—/ A>®
k

The finality of next would then yield h = k.
Define ¢: A% x A® x A® — {L} U (A x (A% x A>® x A*)) by

1, ifo=17=p=),
) (a0, 0,0), ifo=7=()and p=a-p for some a € A and p' € A,
o7 p) = (a,((),7",p)), ifoc={() and 7 =a-7' for some a € A and 7/ € A>,
(a,(¢',7,p)), ifoc=a-o for some a € Aand o’ € A.

Using the rules for comp, it is now elementary to check that A and k£ make their respective diagrams
commute. O

Exercise 1.2.9

Consider two sets A, B with a function f: A — B between them. Use finality to define a function
[A® — B that applies f element-wise. Use uniqueness to show that this mapping f — f is
‘functorial’ in the sense that (id4)>° = idge and (go f)*° = g™ o f°.

Solution. For a (non-empty) set B, let nextg: B> — { L}U(B x B*®) denote the final coalgebra defined
by

ext(c) 1, if o is the empty sequence,
next(o) :=
(b,0’), if o has head b € B and tail 0/ € B>, ie. 0 =b-0’,

12

for all o € B*. For a function f: A — B, define a coalgebra cy: A% — {L} U (B x A>) by

s(0) = {J_, if o = (),

(f(a),0’), ifo=a-o for somea € A and o’ € A®,
for all 0 € A®. Let f*°: A>° — B be the unique function making

id{J_} U (idg X f°)

{L}U(B x A%) -t » {L}U (B x B)
cy =~ | nextp
AOO ________________EI_!}O_O _______________) BOO

commute. Then f({ag,a1,a2,as,...)) = (f(ao), f(a1), f(a2), f(as),...) for all ag,ai,as,as,... € A,
and analogously for finite sequences.

We see that ciq, = nextq. So (id4)> = idge by finality of nexts. Furthermore, for functions
f:A— Band g: B— C, we see that

id{J_} U (idgx f°)

{L}U(C x A®) {1} U (C x B®)

Cgof Cg

commutes. Consequently, the outer square in the diagram

id{J_} U (ide X f) id{J_} U (idgxg>)

[L}U(C x A®) {1YU(C x B®) {L}U(C x =)

Cgof Cg & | nextco

A>® — B = (O
f g

commutes, i.e.
nextc o (9% o %) = (idg1y U (ido x (9% 0 £))) © cgoy-
The finality of nextc then yields (g o f)*° = g™ o f>. O
Exercise 1.2.10
Use finality to define a map st: A® x B — (A x B)®> that maps a sequence o € A and an element

b € B to a new sequence in (A X B)*® by adding this b at every position in o. (This is an example of a
‘strength’ map; see Exercise 2.5.4.

Solution. Define a coalgebra c: A x B — {1} U ((A x B) x (A*® x B)) as follows:

c(o,b) = {J_’ if o=,

((a,b),(0",b)), if o =a-o for somea € A and o’ € A™,

13

for all 0 € A* and b € B. The unique function st: A* x B — (A x B)* making

{L}U ((A % B) x (A® X B)) -=--"=nmmm-toomaaiee » {L} U ((Ax B) x (A x B)™®)
c = [next
A® X B ---mmmmmmmme o ST > (A x B)™®
commute will satisfy st({(ag, a1, as,...),b) = ((ap,b), (a1,b), (az,b),...) for all ap,ar,az,as,... € A and
b € B, and analagously for finite sequences in A*. O

1.3 Generality of Temporal Logic of Coalgebras

Exercise 1.3.1
The nexttime operator O introduced in (1.9) is the so-called weak nexttime. There is an associated
strong nexttime, given by -O—. Note the difference between weak and strong nexttime for sequences.

Solution. Recall that, for a sequence coalgebra ¢: S — {L} U (A x S) and a predicate P C S, we have
(OP)(z) ifand only if c¢(x) =L orc(x) € Ax P,
for all x € S. So,
(O0=P)(z) ifand onlyif c(x)= L orec(x) € Ax (S\P),

and thus
(=O=P)(x) if and only if ¢(z) # L and ¢(x) ¢ A x (S\ P).

Since the codomain of cis {L} U (A x S), and since P C S, we can equivalently write this as
(=O=P)(x) if and only if ¢(z) € A x P. O

Exercise 1.3.2
Prove that the ‘truth’ predicate that always holds is a (sequence) invariant. And if Py and Py are
invariants, then so is the intersection Py N Py. Finally, if P is an invariant, then so is OP.

Solution. Fix a sequence coalgebra c: S — { L} U(A x S). The truth predicate is the set S itself. Then,
forallz € S,
(OS)(z) ifand only if e¢(x) =L or ¢(xz) € A x S.

Since the codomain of cis {L} U (A x S), this means that OS = S, and so S is an invariant.
Now suppose that P; and P, and invariant, i.e. P, C OP; and P, C OP,. Then, for all z € S,

(x

(x

if and only if (c(
(

(O(P1 N Py))(xz) if and only if
if and only if

Lore(z)e Ax (PN P)

c(zr) =
clx)y=_Lorc(x)e (Ax P)N(Ax P)
=_lorc(z) e Ax Py) and (c(z) = Lorc(z) € Ax P))

x)
if and only if (OP;)(x) and (OP%)(x).

Hence PN P, C (OP)) N (OP;) =0O(P; N P,), and so P N Py is also invariant.

Finally, suppose that P is invariant, i.e. P C OP. We aim to show that OP C OOP. Suppose x € S
is such that (OP)(x) holds. Then either ¢(x) = L or ¢(x) € A x P C A x OP. Therefore (OOP)(x)
holds. O

14

Exercise 1.3.3

1. Show that O is an interior operator, i.e. satisfies: AP C P, P COOP, and PC Q = OP C
0Q.

2. Prove that a predicate P is invariant if and only if P = OP.

Solution. Fix a sequence coalgebra c: S — {1} U (A x S). Recall that the henceforth operator OJ is
defined on predicates P C S as follows: for all x € S,

(OP)(z) if and only if there exists an invariant Q C S with z € Q C P.

In other words, [JP is the union of all invariants contained in P.

1. If z € OP, then there is an invariant @ C S with x € Q@ C P. So z € P too. Also, @) is an
invariant with x € Q C P. So x € OOP as well. Thus P C P and OP C OOP.

Now suppose P C @ C S. Then, for any x € [P, there is an invariant R C S with x € R C
P C Q. So z € UQ as well. Therefore P C Q.

2. For the forward direction, suppose that P is invariant. By definition, JP is the union of all
invariants contained within P. As P is assumed to be an invariant, we must have OOJP = P.

For the converse direction, suppose that (JP = P. We need to show that P is an invariant, i.e.
P COP. For any x € P = P, there exists an invariant Q C S with z € Q C P. As @ is an
invariant, either ¢(x) = L or ¢(z) € A x Q C A x P. Hence we also have z € OP. Therefore
P C OP, meaning P is an invariant. U

Exercise 1.3.4
Recall the finite behaviour predicate O((—) s) from Example 1.3.4.1 and show that it is an invariant:
O((=) #) CO0((—) 4). Hint: For an invariant Q, consider the predicate Q' = (—(—) #) N (0Q).

Solution. Fix a sequence coalgebra c: S — { L}U(A x S). Recall that, for a predicate P C S and x € S,
(OP)(x) if and only if for all invariants @ C S, we have =Q(z) or Q Z —P.

That is, OP = -[-P.

Suppose x € S is such that <>(:c s) holds. We need to show that O (x -+) holds, i.e. if z % o/
for some (a, ') € A x S, then ¢ (2’ /) also holds. Fix any invariant Q@ C S with Q C =((—) 4). We
need to show that —Q(z’).

Following the hint, we consider the predicate

Q ==((=) #) N Q).

Observe that @’ is an invariant: if y € S satisfies @Q’(y), then there is some (b,y’) € A x S such that
Yy LA y' and Q(y’) hold. Then, since @ C —((—) /4) and Q is an invariant, we conclude that Q'(y’) also
holds. So Q' C OQ'.

Hence if Q(2) holds, then Q’'(x) holds too, contradicting the assumption that <>(:L' v) O

Exercise 1.3.5
Let (A, <) be a complete lattice, i.e. a poset in which each subset U C A has a join \| U € A. It is well
known that each subset U C A then also has a meet NU € A, given by N\U =\/{ac A|VbeUa<b}.

15

Let f: A — A be a monotone function: a < b implies f(a) < f(b). Recall, e.g. from Davey and
Priestley (1990, Chapter 4) that such a monotone f has both a least fived point uf € A and a greatest
fized point vf € A given by the formulas:

pf=NoaeAlfla)<a}, vi=\[{acAla<f(a)}
Now let ¢: S — {L} U (A x A) be an arbitrary sequence coalgebra, with associated nexttime operator O.

1. Prove that O is a monotone function P(S) — P(S), i.e. that P C @Q implies OP C OQ, for all
P,QCS.

2. Check that OP € P(S) is the greatest fixed point of the function P(S) — P(S) given by U
PNoU.

3. Define for P,Q C S a new predicate P U Q@ C S, for ‘P until Q’ as the least fized point of
Uw— QU (PN-0-U). Check that ‘until’ is indeed a good name for P U @, since it can be
described explicitly as

PUQ={zeS |IneN3xg,z,...,2, €8S.
zo=x A (Vi <nIaxz; > zi1)AQ(xy)
AYi < n.P(x;) }.

Hint: Don’t use the fixed point definition p, but first show that this subset is a fized point, and
then that it is contained in an arbitrary fized point.

(The fixed point definitions that we described above are standard in temporal logic; see e.g. Emerson
(1990, 3.24-3.25). The above operation U is what is called the ‘strong’ until. The ‘weak one’ does not
have the negations — in its fized-point description in point 3.)

Solution.

1. For subsets P,Q € P(S) with P C @, and for « € S such that (OP)(z) holds, we have
clx)=_Lorec(x)e Ax P.
From the assumption that P C @, it follows that
c(x) =L ore(x) e AxQ,
or equivalently, (OQ)(x).

2. Fix P € P(S) and define fp: P(S) — P(S) by fp(U) = PNOU for all U € P(S). Then the
greatest fixed point of fp is

vifp)= |J U= |J U=0OP
UeP(S), UeP(S),
UCfp(U) UCPNOU

3. Fix P,@Q € P(S), and define fpg: P(S) — P(S) by

fra(U) = QU (PN -0-U)

16

for all U € P(S). Recall, from Exercise 1.3.1, that
“O-U={x€f : c¢(x) e AxU}.
We wish to show that the set
Upg =QU {:r € S : there exist n € Z~g, xg,...,T, € S and ag,...,a,_1 € A

Ap—
such that z = xg 20, o222 2 and

P(xg),...,P(xn_1), and Q(x,) all hold}

is the least fixed point of fpgq.
First, observe that

fro(Upq) = QU (PN =0-Upq)
=QU(PN{zeS : c(r)e AxUpg})
=QU{zeS : P(z)and c¢(x) € AxUpg }
=Upq;

so that Up is indeed a fixed point of fpq.
Now we show that Up is the least fixed point of fpg. Fix some B C S with fpq(B) = B, i.e.

QU{zeS : P(x)and c(z) e Ax B} =B.

Then we get Upgp C B by induction on the length of finite sequences wg,...x, € S and
ao, . .., an_1 € A satisfying zg — - - - Gty Tp, and P(xg) A+ A P(zp—1) A Q(zp). O

1.4 Abstractness of Coalgebraic Notions

Exercise 1.4.1
Let (M,+,0) be a monoid, considered as a category. Check that a functor F: M — Sets can be
identified with a monoid action: a set X together with a function p: X x M — X with u(x,0) = x

and p(x, my +mz) = p(p(x, mz), my).

Solution. Suppose we are given functor F': M — X. This F sends the unique object x € Obj(M) to a
set F'(x) € Obj(Sets), and sends each m € Arr(M) to a function F'm: F(x) — F(%). The functoriality
of F' requires that F'(0) = idp(,) and F(my +mz) = F(m1) o F(mz) for all my,mg € Arr(M). We then
define a function pp: F(*) X Arr(M) — F(x) by pup(z,m) := F(m)(z) for all (x,m) € F(x) x M.

The equality pp(x,0) = x for all x € F(x) follows the equality F'(0) = idp(,), while the equality
pr(x,mp + mso) = pp(pr(z,ma),my) for all x € X and my, mg € Arr(M) follows from the equality
F(m1 4+ ma) = F(my) o F(ma).

Now suppose we are given also given a set X and a function p: X x Arr(M) — X with u(z,0) ==z
and p(x, mp +ma) = p(pu(x,ma),my) for all x € X and m, my,ma € Arr(M). We then define a functor
F,: M — Sets by F,(x) = X, for the unique object x € Obj(M), and F,(m) = pu(—,m) for each
m € Arr(M). That F), is actually a functor follows from the assumptions on u.

We then have F),, = F and pp, = p. O

Exercise 1.4.2
Check in detail that the opposite C°P and the product C x D are indeed categories.

17

Solution. Let C and D be categories.
We defined Obj(C°P) := Obj(C). For X,Y € Obj(C), write homc(X,Y") for the set of all morphisms
with domain X and codomain Y. We then defined homcop (X,Y") := hom¢(Y, X), and we defined a

compositition X <i Y < Z in C° to be the composition X L Y % Zin C. The associativity and

identity laws for composition in C°P follow from those for C.
We defined Obj(C x D) := Obj(C) x Obj(D). For X, X" € Obj(C) and Y,Y’ € Obj(D), we let
homeywp((X,Y), (X', Y")) :== hom¢ (X, X’) x homp(Y,Y”). A composition (X,Y) 9, (X", Y") e,

(X", Y") in C x D is defined to be the composition (X,Y) GEITON (X",Y"). For an object (X,Y)

in C x D, the identity morphism idx y is the pair (idx,idy). The associativity and identity laws for
composition in C x D follow from those for C and D. ([

Exercise 1.4.3
Assume an arbitrary category C with an object I € C. We form a new category C/I, the so-called slice
category over I, with

objects maps f: X — I with codomain I in C

morphisms from X ST toY 51 are morphisms h: X —'Y in C for which the following

diagram commutes:
X —"r Ly
N
1
1. Describe identities and composition in C/I, and verify that C/I is a category.

2. Check that taking domains yields a functor dom: C/I — C.

3. Verify that for C = Sets, a map f: X — I may be identified with an I-indexed family of sets
(X:)icr, namely where X; = f~(i). What do morphisms in C/I correspond to, in terms of such
indexed families?

Solution.

1. The identities and composition in C/I are simply the identities and composition in C. So the fact
that C/I is a category follows from C being a category.

2. We define dom: C/I — C as follows: for a morphism h from X S Ttoy L Iin C/I, we simply
define dom(h) := h. This immediately makes dom a functor from C/I to C.

3. The claimed identification is obvious. Now fix a morphism h from X LItoy % Iin Sets/I,

so that the diagram
X —hr Sy
N o
1

in Sets commutes. This requires that g(h(z)) = f(z) for all z € X. Identifying X; := f~!(i) and
Y; == g~ 1(i) for all i € I, we can identify h with a family of functions (h;);c; such that h;(z) € Y;
for all z € X;, for all 1 € I.

U

18

Exercise 1.4.4
Recall that for an arbitrary set A we write A* for the set of finite sequencees {(ag,...,a,) of elements
a; € A.
1. Check that A* carries a monoid structure given by concatenation of sequences, with the empty
sequence () as a neutral element.

2. Check that the assignment A — A* yields a functor Sets — Mon by mapping a function f: A —
B between sets to the function f*: A* — B* given by {(ao,...,an) — (f(ag),..., f(ay)). (Be
aware of what needs to be checked: f* must be a monoid homomorphism, and (—)* must preserve
composition of functions and identity functions.)

3. Prove that A* is the free monoid on A: there is the singleton-sequence insertion map n: A — A*
which is universal among all mappings of A into a monoid. The latter means that for each monoid
(M,0,4) and function f: A — M there is a unique monoid homomorphism g: A* — M with

gon=f.
Solution.

1. Concatenation is associative because all the sequences under consideration are finite.

2. That (—)* preserves composition and identity functions is obvious, so we just check that for a
function f: A — B, the map f*: A* — Bx is a monoid homomorphism. Fix finite sequences
(ag,...,an),(ag,...,a;) € A*. Then

f(ao, .- an) - {ag, ..., a})) =

<a0 an7a67" a’;{:>)

= (f(ao) --->fan f(ag), .-, f(ar))
((a0), - -, flan)) - (f(ag), .., f(ap))
(

ag, - -, an)) - (ag, - .. ay))

and f(()) = (). So f* is a monoid homomorphism.

I
f
f

I

3. Define n: A — A* by n(a) = (a) for all a € A. Fix a monoid (M, 0, +) and a function f: A — M.
Define g: A* - M by
9(()) =0
9({ao, .-, an)) = flao) +---+ flan)

for all (ag, ..., a,) € A*. This g is clearly a mononid homomorphism, using the associativity of +
in M. Observe that the diagram

A— T s oax
g

f
M

in Sets commutes: we have f(a) = g(n(a)) for all a € A. Now suppose that there is another
monoid homomorphism h: A* — M such that the diagram

A— T s oax
f h
M

19

in Sets commutes. As h: A* — M is a monoid homomorphism and f = hn, we require that

h({)) = 0 and
h({ao, .-, an)) = h({ao) - - .- (an))
= h({ao)) + - -+ h((an))
= h(n(ao)) + - -~ + h(n(an))
= flao) +---+ flan)
= g(<a0, s ,an)),
for all (ag,...,an) € A*. Therefore h = g. O

Exercise 1.4.5
Recall from (1.83) the statements with exceptions of the form S — {1} USU (S x E).

1. Prove that the assignment X — {L} U X U (X X E) is functorial, so that the statements are a
coalgebra for this functor.

2. Show that all the operations aty,...,at,, methy,..., meth,, of a class as in (1.10) can also be
described as a single coalgebra, namely of the functor:

Xr—>D1x---anx({J_}UXU(XxE))><-~-><({J_}UXU(X><E)Z.

Solution.

1. Let F': Sets — Sets denote this assignment F(X) := {L} U X U (X x E) where all unions
are disjoint unions. We define F' on morphisms as follows: for functions f: X — Y, we define
F(f): F(X)— F(Y) to be the function

1, ifo=1,
F(f)(x) = ¢ f(2), if x € X,
(f(2'),e), if z=(2',¢e) for some (z/,¢) € X X E.

Then F(idx) = idp(y) and F(gf) = F(g)F(f) for all sets X and functions X & v % 7.

2. The functor’s definition on morphisms is similar in style with the previous part. O

Exercise 1.4.6

Recall the nexttime operator O for a sequence coalgebra c: S — Seq(S) = {L} U (A x S) from the
previous section. Ezercise 1.3.5.1 says that it forms a monotone function P(S) — P(S) — with respect
to the inclusion order — and thus a functor. Check that invariants are precisely O-coalgebras!

Solution. The O-coalgebras are simply a subsets U C S such that U C OU. These are precisely what
invariants are. U

20

2 Coalgebras of Polynomial Functors

2.1 Constructions on Sets

Exercise 2.1.1
Verify in detail the bijective correspondences (2.2), (2.6), (2.11) and (2.16).

Solution. #77

Exercise 2.1.2

#2?
Solution. #77

Exercise 2.1.3

#2?
Solution. #77

Exercise 2.1.4

#2?
Solution. #77

Exercise 2.1.5

#2?
Solution. #77

Exercise 2.1.6

#2?
Solution. #77

Exercise 2.1.7

#2?
Solution. #77

Exercise 2.1.8

#2?
Solution. #77

Exercise 2.1.9

#2?
Solution. #77

Exercise 2.1.10
H#2?

Solution. #77
Exercise 2.1.11
#H2?

21

Solution. #77

Exercise 2.1.12
344

Solution. #77

Exercise 2.1.13
H#2?

Solution. #77

Exercise 2.1.14
H#2?

Solution. #77

2.2 Polynomial Functors and Their Coalgebras

Exercise 2.2.1

#2?
Solution. #77

Exercise 2.2.2

#2?
Solution. #77

Exercise 2.2.3

#2?
Solution. #77

Exercise 2.2.4

#27
Solution. #77

Exercise 2.2.5

#29
Solution. #77

Exercise 2.2.6

#27
Solution. #77

Exercise 2.2.7

H#2?
Solution. #77
Exercise 2.2.8

427

22

Solution. #77

Exercise 2.2.9

#27
Solution. #77

Exercise 2.2.10
H#2?

Solution. #77

Exercise 2.2.11
H#2?

Solution. #77

Exercise 2.2.12
H#2?

Solution. #77

2.3 Final Coalgebras

Exercise 2.3.1

#2?
Solution. #77

Exercise 2.3.2

#2?
Solution. #77

Exercise 2.3.3

#27
Solution. #77

Exercise 2.3.4

#29
Solution. #77

Exercise 2.3.5

#27
Solution. #77

Exercise 2.3.6

H#2?
Solution. #77
Exercise 2.3.7

427

23

Solution. #77

Exercise 2.3.8
#2?
Solution. #77

2.4 Algebras

Exercise 2.4.1
#H2?

Solution. #77
Exercise 2.4.2
344

Solution. #77
Exercise 2.4.3
#H2?

Solution. #77
Exercise 2.4.4
H#2?

Solution. #77
Exercise 2.4.5
H#e?

Solution. #77
Exercise 2.4.6
H#H2?

Solution. 77
Exercise 2.4.7
H#2?

Solution. #77
Exercise 2.4.8
#27

Solution. #77
Exercise 2.4.9
#2?

Solution. #77
Exercise 2.4.10
#2?

Solution. #77

24

2.5 Adjunctions, Cofree Coalgebras, Behaviour-Realisation

Exercise 2.5.1

#2?

Solution. #77 O
Exercise 2.5.2

H#H2?

Solution. #77 O
Exercise 2.5.3

H#H2?

Solution. #77 O

Exercise 2.5.4
This exercise describes ‘strength’ for endofunctors on Sets. In general, this is a useful notion in the
theory of datatypes (Cockett and Spencer, 1992), (Cockett and Spencer, 1995) and of computations
(Moggi, 1991); see Section 5.2 for a systemic description.

Let F': Sets — Sets be an arbitrary functor. Consider for sets X,Y the strength map

stxy

F(X)xY

F(X xY)

(u,y) ———— F(\x € X.(z,y))(u)

1. Prove that this yields a natural transformation F(—)x (—) = F((=)x(=)), where both the domain
and codomain are functors Sets x Sets — Sets.

2. Describe this strength map for the list functor (—)* and for the powerset functor P.

Solution. #77 O
Exercise 2.5.5

#2?

Solution. #77 O
Exercise 2.5.6

#H2?

Solution. #77 O
Exercise 2.5.7

H#H2?

Solution. #77 O
Exercise 2.5.8

H#2?

Solution. #77 O

25

Exercise 2.5.9

#2?
Solution. #77

Exercise 2.5.10
H#2?

Solution. #77

Exercise 2.5.11
H#2?

Solution. #77

Exercise 2.5.12
#2?

Solution. #77

Exercise 2.5.13
#2?

Solution. #77

Exercise 2.5.14
#2?

Solution. #77

Exercise 2.5.15
H#2?

Solution. #77

Exercise 2.5.16
H#H2?

Solution. #77

Exercise 2.5.17
H#2?

Solution. #77

26

3 Bisimulations

3.1 Relation Lifting, Bisimulations and Congruences

Exercise 3.1.1

#2?
Solution. #77

Exercise 3.1.2

#2?
Solution. 77

Exercise 3.1.3

#2?
Solution. #77

Exercise 3.1.4

#2?
Solution. #77

Exercise 3.1.5

#2?
Solution. 77

Exercise 3.1.6

422

Solution. #77

3.2 Properties of Bisimulations

Exercise 3.2.1

#2?
Solution. 77

Exercise 3.2.2

#?
Solution. #77

Exercise 3.2.3

#2?
Solution. #77

Exercise 3.2.4
#H2?

Solution. 77

27

Exercise 3.2.5

#27
Solution. #77

Exercise 3.2.6
H#2?

Solution. #77

Exercise 3.2.7
H#2?

Solution. #77

3.3 Bisimulations as Spans and Cospans

Exercise 3.3.1

#2?
Solution. #77

Exercise 3.3.2

#2?
Solution. #77

Exercise 3.3.3

#2?
Solution. #77

Exercise 3.3.4

#2?
Solution. #77

3.4 Bisimulations and the Coinduction Proof Principle

Exercise 3.4.1

#27
Solution. #77

Exercise 3.4.2

344
Solution. #77

Exercise 3.4.3

#27
Solution. #77
Exercise 3.4.4

407

28

Solution. #77

Exercise 3.4.5
H#2?

Solution. #77

Exercise 3.4.6
H#2?

Solution. #77

Exercise 3.4.7
#2?

Solution. #77

3.5 Process Semantics

Exercise 3.5.1

#2?
Solution. #77

Exercise 3.5.2

#2?
Solution. #77

Exercise 3.5.3

#2?
Solution. #77

Exercise 3.5.4

#2?
Solution. #77

29

Bibliography and References

J. Robin B. Cockett and Dwight Spencer. Strong categorical datatypes I. In Robert A. G. Seely,
editor, International Meeting on Category Theory 1991, volume 13, pages 141-169. Canadian
Mathematical Society Proceedings, AMS, Montreal, 1992.

J. Robin B. Cockett and Dwight Spencer. Strong categorical datatypes II: A term logic for categorical
programming. Theoretical Computer Science, 139:69-113, 1995.
DOI: https://doi.org/10.1016/0304-3975(94)00099-5.

Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and Order. Cambridge University

Press, 1990.
DOI: https://doi.org/10.1017/CB09780511809088.

E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume B: Formal Models and Semantics, pages 995-1072. Elsevier B.V., 1990.
DOI: https://doi.org/10.1016/B978-0-444-88074-1.50021-4.

Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation. Cambridge

University Press, 2017.
DOI: https://doi.org/10.1017/CB09781316823187.

Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1):55-92,

1991.
DOI: https://doi.org/10.1016/0890-5401(91)90052-4.

30

https://doi.org/10.1016/0304-3975(94)00099-5
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1016/B978-0-444-88074-1.50021-4
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1016/0890-5401(91)90052-4

