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1 Motivation

1.1 Naturalness of Coalgebraic Representations

Exercise 1.1.1

1. Prove that the composition operation ; as defined for coalgebras S → {⊥} ∪ S is associative, i.e.
satisfies s1 ; (s2 ; s3) = (s1 ; s2) ; s3, for all statements s1, s2, s3 : S → {⊥} ∪ S.

Define a statement skip : S → {⊥} ∪ S which is a unit for composition ; i.e. which satisfies
(skip ; s) = s = (s ; skip), for all s : S → {⊥} ∪ S.

2. Do the same for ; defined on coalgebras S → {⊥} ∪ S ∪ (S × E).
(In both cases, statements with an associative composition operation and a unit element form a

monoid.)

Solution.

1. Recall that the composition operation ; was defined as follows:

s ; t := λx ∈ S.

󰀫
⊥, if s(x) = ⊥,

t(x′) if s(x) = x′ ∈ S,

for coalgebras s, t : S → {⊥} ∪ S. Fix any three coalgebras s1, s2, s3 : S → {⊥} ∪ S. Then

s1 ; (s2 ; s3) = λx ∈ S.

󰀫
⊥, if s1(x) = ⊥,

(s2 ; s3)(x
′), if s1(x) = x′ ∈ S,

= λx ∈ S.

󰀫
⊥, if either s1(x) = ⊥, or both s1(x) = x′ ∈ S and s2(x

′) = ⊥,

s3(x
′′), if s1(x) = x′ ∈ S and s2(x

′) = x′′ ∈ S,

= λx ∈ S.

󰀫
⊥, if (s1 ; s2)(x) = ⊥,

s3(x
′′), if (s1 ; s2)(x) = x′′ ∈ S,

= (s1 ; s2) ; s3.

So the composition operation ; is associative.

The coalgebra skip : S → {⊥}∪S defined by skip(x) := x, for all x ∈ S, satisfies (skip ; s) = s =
(s ; skip) for all coalgebras s : S → {⊥} ∪ S.

2. Now we consider the composition operation ; defined as follows:

s ; t := λx ∈ S.

󰀻
󰁁󰀿

󰁁󰀽

⊥, if s(x) = ⊥,

t(x′), if s(x) = x′ ∈ S,

(x′, e), if s(x) = (x′, e) ∈ S × E,

for coalgebras s, t : S → {⊥}∪S ∪ (S×E). Fix any three coalgebras s1, s2, s3 : {⊥}∪S ∪ (S×E).
Then

s1 ; (s2 ; s3) = λx ∈ S.

󰀻
󰁁󰀿

󰁁󰀽

⊥, if s1(x) = ⊥,

(s2 ; s3)(x
′), if s1(x) = x′ ∈ S,

(x′, e), if s1(x) = (x′, e) ∈ S × E,
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= λx ∈ S.

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

⊥, if either s1(x) = ⊥, or both s1(x) = x′ ∈ S and s2(x
′) = ⊥,

s3(x
′′), if s1(x) = x′ ∈ S and s2(x

′) = x′′ ∈ S,

(x′′, e), if s1(x) = x′ ∈ S and s2(x
′) = (x′′, e) ∈ S × E,

(x′, e), if s1(x) = (x′, e) ∈ S × E,

= λx ∈ S.

󰀻
󰁁󰀿

󰁁󰀽

⊥, if (s1 ; s2)(x) = ⊥,

s3(x
′′), if (s1 ; s2)(x) = x′′ ∈ S,

(x′′, e), if (s1; s2)(x) = (x′′, e) ∈ S × E,

= (s1 ; s2) ; s3.

So this composition operation ; is also associative.

Now define the coalgebra skip : S → {⊥} ∪ S ∪ (S ×E) by skip(x) := x, for all x ∈ S. Then we
have (skip ; s) = s = (s ; skip) for all coalgebras s : S → {⊥} ∪ S ∪ (S × E).

Exercise 1.1.2
Define also a composition monoid (skip, ; ) for coalgebras S → P(S).

Solution. For coalgebras s, t : S → P(S), define

s ; t := λx ∈ S.

󰀳

󰁃
󰁞

y∈s(x)
t(y)

󰀴

󰁄 .

Then, for coalgebras s1, s2, s3 : S → P(S), we have

s1 ; (s2 ; s3) = λx ∈ S.

󰀳

󰁃
󰁞

y∈s1(x)
(s2 ; s3)(y)

󰀴

󰁄

= λx ∈ S.

󰀳

󰁃
󰁞

y∈s1(x)

󰁞

z∈s2(y)
s3(z)

󰀴

󰁄

= λx ∈ S.

󰀳

󰁃
󰁞

z∈(s1 ; s2)(x)
s3(z)

󰀴

󰁄

= (s1 ; s2) ; s3.

Furthermore, defining skip : S → P(S) by skip(x) := {x} for all x ∈ S, we have

(skip ; s) = λx ∈ S.

󰀳

󰁃
󰁞

y∈skip(x)
s(y)

󰀴

󰁄

= λx ∈ S.

󰀳

󰁃
󰁞

y∈{x}
s(y)

󰀴

󰁄

= λx ∈ S.s(x)

= s
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and

(s ; skip) = λx ∈ S.

󰀳

󰁃
󰁞

y∈s(x)
skip(y)

󰀴

󰁄

= λx ∈ S.

󰀳

󰁃
󰁞

y∈s(x)
{y}

󰀴

󰁄

= λx ∈ S.s(x)

= s.

1.2 The Power of Coinduction

Exercise 1.2.1
Compute the nextdec-behaviour of 1

7 ∈ [0, 1) as in Example 1.2.2.

Solution. We first recall all of the following functions.

1. The final coalgebra next : {0, . . . , 9}∞ → {⊥} ∪
󰀃
{0, . . . , 9}× {0, . . . , 9}∞

󰀄
is defined by

next(σ) :=

󰀫
⊥, if σ is the empty sequence,
(d,σ′), if σ has head d ∈ {0, . . . , 9} and tail σ′ ∈ {0, . . . , 9}∞, i.e. σ = d · σ′,

for all (finite or infinite) sequences σ ∈ {0, . . . , 9}∞.

2. The coalgebra nextdec : [0, 1) → {⊥} ∪
󰀃
{0, . . . , 9}× [0, 1)

󰀄
is defined by

nextdec(r) :=

󰀫
⊥, if r = 0,

(d, 10r − d), if d ≤ 10r < d+ 1 and d ∈ {0, . . . , 9},

for all r ∈ [0, 1).

3. The function behnextdec : [0, 1) → {0, . . . , 9}∞ is the unique function making

{⊥} ∪
󰀃
{0, . . . , 9}× [0, 1)

󰀄
{⊥} ∪

󰀃
{0, . . . , 9}× {0, . . . , 9}∞

󰀄

[0, 1) {0, . . . , 9}∞

id{⊥} ∪ (id{0,...,9}×behnextdec)

nextdec

∃!behnextdec

∼= next

commute.

We wish to compute behnextdec
󰀃
1
7

󰀄
. We see that

behnextdec

󰀕
1

7

󰀖
= next−1

󰀣󰀓
id{⊥} ∪ (id{0,...,9} × behnextdec)

󰀔󰀣
nextdec

󰀕
1

7

󰀖󰀤󰀤

= next−1

󰀣󰀓
id{⊥} ∪ (id{0,...,9} × behnextdec)

󰀔󰀕󰀕
1,

3

7

󰀖󰀖󰀤

4



= next−1

󰀣󰀣
1, behnextdec

󰀕
3

7

󰀖󰀤󰀤

= 1 · behnextdec
󰀕
3

7

󰀖
.

Continuing in this fashion,

behnextdec

󰀕
1

7

󰀖
= 1 · behnextdec

󰀕
3

7

󰀖

= 1 ·
󰀕
4 · behnextdec

󰀕
2

7

󰀖󰀖

= 1 ·
󰀕
4 ·

󰀕
2 · behnextdec

󰀕
6

7

󰀖󰀖󰀖

= 1 ·
󰀕
4 ·

󰀕
2 ·

󰀕
8 · behnextdec

󰀕
4

7

󰀖󰀖󰀖󰀖

= 1 ·
󰀕
4 ·

󰀕
2 ·

󰀕
8 ·

󰀕
5 · behnextdec

󰀕
5

7

󰀖󰀖󰀖󰀖󰀖

= 1 ·
󰀕
4 ·

󰀕
2 ·

󰀕
8 ·

󰀕
5 ·

󰀕
7 · behnextdec

󰀕
1

7

󰀖󰀖󰀖󰀖󰀖󰀖
.

Therefore behnextdec
󰀃
1
7

󰀄
= 〈1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, . . . 〉.

Exercise 1.2.2
Formulate appropriate rules for the function odds : A∞ → A∞ in analogy with the rules (1.7) for evens.

Solution. We recall that, for a sequence σ := 〈a0, a1, a2, a3, . . . 〉 ∈ A∞, the function odds satisfies
odds(σ) = 〈a1, a3, a5, . . . 〉, and analogously if σ is a finite sequence. The rules we want odds to satisfy
are:

σ ∕→
odds(σ) ∕→

i.e. odds should send the empty sequence to the empty sequence;

σ
a−→ σ′ σ′ ∕→
odds(σ) ∕→

i.e. odds should send a singleton sequence 〈a〉 to the empty sequence; and

σ
a−→ σ′ σ′ a′−→ σ′′

odds(σ)
a′−→ odds(σ′)

i.e. if σ = a · a′ · σ′ ∈ A∞, where a, a′ ∈ A, then odds(σ) = a′ · odds(σ′).

Exercise 1.2.3
Use coinduction to define the empty sequence 〈〉 ∈ A∞ as a map {⊥} → A∞.

Fix an element a ∈ A, and similarly define the infinite sequence −→a : {⊥} → A∞ consisting of only
as.

5



Solution. We recall that the final coalgebra next : A∞ → {⊥} ∪
󰀃
A×A∞󰀄

is defined by

next(σ) :=

󰀫
⊥, if σ is the empty sequence,
(a,σ′), if σ has head a ∈ A and tail σ′ ∈ A∞, i.e. σ = a · σ′,

for all (finite or infinite) sequences σ ∈ A∞.
For the coalgebra ι1 : {⊥} → {⊥}∪(A×{⊥}) defined by ι1(⊥) := ⊥, the unique function behι1 : {⊥} →

A∞ making

{⊥} ∪ (A× {⊥}) {⊥} ∪ (A×A∞)

{⊥} A∞

id{⊥} ∪ (idA×behι1 )

ι1

∃!behι1

∼= next

commute satisfies behι1(⊥) = 〈〉.
For the coalgebra ca : {⊥} → {⊥} ∪ (A × {⊥}) defined by ca(⊥) := (a,⊥), the unique function

behca : {⊥} → A∞ making

{⊥} ∪ (A× {⊥}) {⊥} ∪ (A×A∞)

{⊥} A∞

id{⊥} ∪ (idA×behca )

ca

∃!behca

∼= next

commute satisfies behca(⊥) = −→a = 〈a, a, a, . . . 〉.

Exercise 1.2.4
Compute the outcome of merge(〈a0, a1, a2〉, 〈b0, b1, b2, b3〉).

Solution. Recall that we defined the coalgebra m : A∞ ×A∞ → {⊥} ∪ (A× (A∞ ×A∞)) by

m(σ, τ) :=

󰀻
󰁁󰀿

󰁁󰀽

⊥, if σ ∕→ and τ ∕→,

(a, (σ, τ ′)), if σ ∕→ and τ
a−→ τ ′,

(a, (τ,σ′)), if σ a−→ σ′,

for all σ, τ ∈ A∞, and that merge : A∞ ×A∞ → A∞ is the unique function making

{⊥} ∪ (A× (A∞ ×A∞)) {⊥} ∪ (A×A∞)

A∞ ×A∞ A∞

id{⊥} ∪ (idA×merge)

m

∃!merge

∼= next

commute. Then

merge(〈a0, a1, a2〉, 〈b0, b1, b2, b3〉) = next−1
󰀓󰀃

id{⊥} ∪ (idA ×merge)
󰀄󰀃
m(〈a0, a1, a2〉, 〈b0, b1, b2, b3〉)

󰀄󰀔
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= next−1
󰀓󰀃

id{⊥} ∪ (idA ×merge)
󰀄󰀃
(a0, (〈b0, b1, b2, b3〉, 〈a1, a2〉))

󰀄󰀔

= next−1
󰀓󰀃

a0,merge(〈b0, b1, b2, b3〉, 〈a1, a2〉)
󰀄󰀔

= a0 ·merge(〈b0, b1, b2, b3〉, 〈a1, a2〉),

and so on. Eventually, we obtain merge(〈a0, a1, a2〉, 〈b0, b1, b2, b3〉) = 〈a0, b0, a1, b1, a2, b2, b3〉.

Exercise 1.2.5
Is the merge operation associative, i.e. is merge(σ,merge(τ, ρ)) the same as merge(merge(σ, τ), ρ)? Give
a proof or a counterexample. Is there a neutral element for merge?

Solution. The merge operation is not associative:

merge(〈a〉,merge(〈b〉, 〈c〉) = merge(〈a〉, 〈b, c〉)
= 〈a, b, c〉,

whereas

merge(merge(〈a〉, 〈b〉), 〈c〉) = merge(〈a, b〉, 〈c〉)
= 〈a, c, b〉,

for all a, b, c ∈ A.
The neutral element for merge is the empty sequence: for any σ ∈ A∞, we have merge(σ, 〈〉) =

merge(〈〉,σ) = σ.

Exercise 1.2.6
Show how to define an alternative merge function which alternatingly takes two elements from its argu-
ment sequences.

Solution. We will define a coalgebra m2 : A
∞ × A∞ → {⊥} ∪ (A × (A∞ × A∞)) so that the desired

merge function is the unique function merge2 : A
∞ ×A∞ → A∞ making

{⊥} ∪ (A× (A∞ ×A∞)) {⊥} ∪ (A×A∞)

A∞ ×A∞ A∞

id{⊥} ∪ (idA×merge2)

m2

∃!merge2

∼= next

commute. As a motivating example, the desired merge of two infinite streams 〈a0, a1, . . . 〉 and 〈b0, b1, . . . 〉
should be

merge2(〈a0, a1, a2, a3, . . . 〉, 〈b0, b1, b2, b3, . . . 〉) = 〈a0, a1, b0, b1, a2, a3, b2, b3, . . . 〉.

As the diagram above commutes, we would require

merge2
󰀃
m2(〈a0, a1, a2, a3, . . . 〉, 〈b0, b1, b2, b3, . . . 〉)

󰀄
=

󰀃
a0, 〈a1, b0, b1, a2, a3, b2, b3, . . . 〉

󰀄

and so m2 should be defined to satisfy

m2(〈a0, a1, a2, a3, . . . 〉, 〈b0, b1, b2, b3, . . . 〉) =
󰀃
a0, (〈a1, b0, a3, b2, . . . 〉, 〈b1, a2, b3, a4, . . . )

󰀄

Dealing with edge cases separately leads us to the following definition: we define the coalgebra
m2 : A

∞ ×A∞ → {⊥} ∪ (A× (A∞ ×A∞)) as follows.
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1. The function m2 sends the pair (〈〉, 〈〉) to ⊥, i.e.

m2(〈〉, 〈〉) := ⊥.

2. If τ ∈ A∞ is a non-empty sequence, say τ
a−→ τ ′ for some τ ′ ∈ A∞ and a ∈ A, then

m2(〈〉, τ) :=
󰀃
a, (〈〉, τ ′)

󰀄
.

3. If σ = 〈a〉 for some a ∈ A, then
m2(〈a〉, τ) :=

󰀃
a, (〈〉, τ)

󰀄

for all τ ∈ A∞.

4. If σ ∈ A∞ has at least length 2, say σ
a−→ σ′ a′−→ σ′′ for some σ′,σ′′ ∈ A∞ and a, a′ ∈ A, then

m2(σ, τ) :=
󰀓
a,
󰀃
merge(odds(σ), evens(τ)),merge(odds(τ), evens(σ′′))

󰀄󰀔

for all τ ∈ A∞.

Now let merge2 : A
∞ ×A∞ → A∞ be the unique function which makes

{⊥} ∪ (A× (A∞ ×A∞)) {⊥} ∪ (A×A∞)

A∞ ×A∞ A∞

id{⊥} ∪ (idA×merge2)

m2

∃!merge2

∼= next

commute. Fix any σ, τ ∈ A∞. We argue by cases on (σ, τ) that this function merge2 is the desired
merge function.

1. If σ = τ = 〈〉, then merge2(〈〉, 〈〉) = 〈〉.

2. If σ = 〈〉 and τ is a non-empty sequence, say τ = a · τ ′ for some a ∈ A and τ ′ ∈ A∞, then

merge2(〈〉, τ) = a ·merge2(〈〉, τ ′).

Thus merge2(〈〉, τ) = τ .

3. If σ = 〈a〉 for some a ∈ A, then

merge2(〈a〉, τ) = a ·merge2(〈〉, τ)
= a · τ.

4. If σ = a · a′ · σ′′ for some a, a′ ∈ A and σ′′ ∈ A∞, then

merge2(σ, τ) = a ·merge2
󰀓
merge

󰀃
odds(σ), evens(τ)

󰀄
,merge

󰀃
odds(τ), evens(σ′′)

󰀄󰀔

= a ·merge2

󰀓
merge

󰀃
a′ · odds(σ′′), evens(τ)

󰀄
,merge

󰀃
odds(τ), evens(σ′′)

󰀄󰀔

= a · a′ ·merge2

󰀓
merge

󰀃
odds(merge(a′ · odds(σ′′), evens(τ))),

evens(merge(odds(τ), evens(σ′′)))
󰀄
,
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merge
󰀃
odds(merge(odds(τ), evens(σ′′))),

odds(merge(evens(τ), odds(σ′′)))
󰀄󰀔

= a · a′ ·merge2

󰀓
merge

󰀃
evens(τ), odds(τ)

󰀄
,merge

󰀃
evens(σ′′), odds(σ′′)

󰀄󰀔

= a · a′ ·merge2(τ,σ
′′),

as desired.

Exercise 1.2.7

1. Define three functions exi : A
∞ → A∞, for i = 0, 1, 2, which extract the elements at positions

3n+ i.

2. Define merge3 : A∞×A∞×A∞ → A∞ satisfying the equation merge3(ex0(σ), ex1(σ), ex2(σ)) = σ,
for all σ ∈ A∞.

Solution.

1. Define c0, c1, c2 : A
∞ → {⊥} ∪ (A×A∞) as follows:

c0(σ) :=

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

⊥, if σ = 〈〉,
(a, 〈〉) if σ = 〈a〉 or σ = 〈a, a′〉 for some a, a′ ∈ A,

(a,σ′′′), if σ a−→ σ′ a′−→ σ′′ a′′−→ σ′′′,

c1(σ) :=

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

⊥, if σ = 〈〉 or σ = 〈a〉 for some a ∈ A,

(a′, 〈〉) if σ = 〈a, a′〉 for some a, a′ ∈ A,

(a′,σ′′′), if σ a−→ σ′ a′−→ σ′′ a′′−→ σ′′′,

c2(σ) :=

󰀫
⊥, if σ = 〈〉, or σ = 〈a〉, or σ = 〈a, a′〉 for some a, a′ ∈ A,

(a′′,σ′′′), if σ a−→ σ′ a′−→ σ′′ a′′−→ σ′′′.

Then, for i ∈ {0, 1, 2}, the function exi : A
∞ → A∞ is the unique function making

{⊥} ∪ (A×A∞) {⊥} ∪ (A×A∞)

A∞ A∞

id{⊥} ∪ (idA×exi)

ci

∃!exi

∼= next

commute.

2. Define the coalgebra m3 : A
∞ ×A∞ ×A∞ → {⊥} ∪ (A× (A∞ ×A∞ ×A∞)) by

m3(σ, τ, ρ) :=

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

⊥, if σ = τ = ρ = 〈〉,󰀃
a, (〈〉, 〈〉, ρ′)

󰀄
, if σ = τ = 〈〉 and ρ

a−→ ρ′ for some a ∈ A and ρ′ ∈ A∞,󰀃
a, (〈〉, ρ, τ ′)

󰀄
, if σ = 〈〉 and τ

a−→ τ ′ for some a ∈ A and τ ′ ∈ A∞,󰀃
a, (τ, ρ,σ′)

󰀄
, if σ a−→ σ′ for some a ∈ A and σ′ ∈ A∞.
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Then we let merge3 : A∞ ×A∞ ×A∞ → A∞ be the unique function making

{⊥} ∪ (A× (A∞ ×A∞ ×A∞)) {⊥} ∪ (A×A∞)

A∞ ×A∞ ×A∞ A∞

id{⊥} ∪ (idA×merge3)

m3

∃!merge3

∼= next

commute.

Let us prove that merge3(ex0(σ), ex1(σ), ex2(σ)) = σ for all σ ∈ A∞, by coinduction. Consider
the function f : A∞ → A∞×A∞×A∞ defined by f(σ) :=

󰀃
ex0(σ), ex1(σ), ex2(σ)

󰀄
for all σ ∈ A∞.

We wish to show that merge3 ◦ f = idA∞ .

{⊥} ∪ (A× (A∞ ×A∞ ×A∞)) {⊥} ∪ (A×A∞)

{⊥} ∪ (A×A∞)

A∞ ×A∞ ×A∞ A∞

A∞

id{⊥} ∪ (idA×merge3)

id{⊥} ∪ (idA×f)

m3

merge3

∼= next

next ∼=

f

Let us first show that the left square commutes. It certainly commutes when we chase the empty
sequence: (m3 ◦f)(〈〉) = ⊥ =

󰀃󰀃
id{⊥}∪ (idA× f)

󰀄
◦next

󰀄
(〈〉). If σ ∈ A∞ is a non-empty sequence,

say σ
a−→ σ′ for some a ∈ A and σ′ ∈ A∞, then we have

(m3 ◦ f)(σ) = m3

󰀃
ex0(σ), ex1(σ), ex2(σ)

󰀄

=
󰀃
a, (ex1(σ), ex2(σ), ex0(σ

′))
󰀄

=
󰀃
a, (ex0(σ

′), ex1(σ
′), ex2(σ

′)))

=
󰀃󰀃
id{⊥} ∪ (idA × f)

󰀄
◦ next

󰀄
(σ),

where the second-to-last equality can also be proven by coinduction. Therefore the outer square
commutes, and so

next ◦ (merge3 ◦ f) =
󰀃󰀃
id{⊥} ∪ (idA × (merge3 ◦ f))

󰀄
◦ next.

The finality of the coalgebra next : A∞ → {⊥} ∪ (A×A∞) now yields merge3 ◦ f = idA∞ .

Exercise 1.2.8
Consider the sequential composition function comp : A∞ × A∞ → A∞ for sequences, described by the
three rules:

σ ∕→ τ ∕→
comp(σ, τ) ∕→

σ ∕→ τ
a−→ τ ′

comp(σ, τ)
a−→ comp(σ, τ ′)

σ
a−→ σ′

comp(σ, τ)
a−→ comp(σ′, τ)

.
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1. Show by coinduction that the empty sequence 〈〉 = next−1(⊥) ∈ A∞ is a unit element for comp,
i.e. that comp(〈〉,σ) = σ = comp(σ, 〈〉).

2. Prove also by coinduction that comp is associative, and thus that sequences carry a monoid struc-
ture.

Solution.

1. Let f : A∞ → A∞ be defined by f(σ) := comp(〈〉,σ). We will show that the diagram

{⊥} ∪ (A×A∞) {⊥} ∪ (A×A∞)

A∞ A∞

id{⊥} ∪ (idA×f)

next ∼=

f

∼= next

commutes, which would yield f = idA∞ by the finality of the coalgebra next.

First, we chase the empty sequence from the bottom left. We see that

(next ◦ f)(〈〉) = next(comp(〈〉, 〈〉))
= next(〈〉)
= ⊥,

the first rule for comp, and
󰀃󰀃
id{⊥} ∪ (idA × f)

󰀄
◦ next

󰀄
(〈〉) =

󰀃
id{⊥} ∪ (idA × f)

󰀄
(⊥)

= ⊥.

Now if σ ∈ A∞ is a non-empty sequence, say σ
a−→ σ′ for some a ∈ A and σ′ ∈ A∞, we see that

(next ◦ f)(σ) = next(comp(〈〉, a · σ′))

= (a, comp(〈〉,σ′))

= (a, f(σ′)),

by the second rule for comp and the definition of f , and
󰀃󰀃
id{⊥} ∪ (idA × f)

󰀄
◦ next

󰀄
(σ) =

󰀃󰀃
id{⊥} ∪ (idA × f)

󰀄󰀃
(a,σ′)

󰀄

= (a, f(σ′)).

Thus next ◦ f =
󰀃
id{⊥} ∪ (idA × f)

󰀄
◦ next. This proves that comp(〈〉,σ) = σ for all σ ∈ A∞.

We now show the other equality, that comp(σ, 〈〉) = σ for all σ ∈ A∞, we will show that the
function g : A∞ → A∞ defined by g(σ) := comp(σ, 〈〉) for all σ ∈ A∞ also satisfies

next ◦ g =
󰀃
id{⊥} ∪ (idA × g)

󰀄
◦ next.

That (next ◦ g)(⊥) =
󰀃󰀃
id{⊥} ∪ (idA× g)

󰀄
◦ next

󰀄
(⊥) is the same as with f . Now if σ ∈ A∞ is such

that σ
a−→ σ′ for some a ∈ A and σ′ ∈ A∞, we see that

(next ◦ g)(σ) = next(comp(a · σ′, 〈〉)
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= (a, comp(σ′, 〈〉))
= (a, g(σ′)),

by the third rule for comp and the definition of g, and
󰀃󰀃
id{⊥} ∪ (idA × g)

󰀄
◦ next

󰀄
(σ) =

󰀃󰀃
id{⊥} ∪ (idA × g)

󰀄󰀄󰀃
(a,σ′)

󰀄

=
󰀃
a, g(σ′)).

Therefore g = idA∞ , i.e. comp(σ, 〈〉) = σ for all σ ∈ A∞.

2. We will define a coalgebra c : A∞ × A∞ × A∞ → {⊥} ∪ (A × (A∞ × A∞ × A∞)) such that the
functions h, k : A∞ ×A∞ ×A∞ → A∞ given by

h(σ, τ, ρ) := comp(σ, comp(τ, ρ)) and
k(σ, τ, ρ) := comp(comp(σ, τ), ρ),

for all σ, τ, ρ ∈ A∞, are both coalgebra homomorphisms from c to next.

{⊥} ∪ (A× (A∞ ×A∞ ×A∞)) {⊥} ∪ (A×A∞)

A∞ ×A∞ ×A∞ A∞

id{⊥} ∪ (idA×h)

id{⊥} ∪ (idA×k)
c

h

k

∼= next

The finality of next would then yield h = k.

Define c : A∞ ×A∞ ×A∞ → {⊥} ∪ (A× (A∞ ×A∞ ×A∞)) by

c(σ, τ, ρ) :=

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

⊥, if σ = τ = ρ = 〈〉,󰀃
a, (〈〉, 〈〉, ρ′

󰀄
, if σ = τ = 〈〉 and ρ = a · ρ′ for some a ∈ A and ρ′ ∈ A∞,󰀃

a, (〈〉, τ ′, ρ)
󰀄
, if σ = 〈〉 and τ = a · τ ′ for some a ∈ A and τ ′ ∈ A∞,󰀃

a, (σ′, τ, ρ)
󰀄
, if σ = a · σ′ for some a ∈ A and σ′ ∈ A∞.

Using the rules for comp, it is now elementary to check that h and k make their respective diagrams
commute.

Exercise 1.2.9
Consider two sets A,B with a function f : A → B between them. Use finality to define a function
f∞ : A∞ → B∞ that applies f element-wise. Use uniqueness to show that this mapping f 󰀁→ f∞ is
‘functorial’ in the sense that (idA)∞ = idA∞ and (g ◦ f)∞ = g∞ ◦ f∞.

Solution. For a (non-empty) set B, let nextB : B∞ → {⊥}∪(B×B∞) denote the final coalgebra defined
by

next(σ) :=

󰀫
⊥, if σ is the empty sequence,
(b,σ′), if σ has head b ∈ B and tail σ′ ∈ B∞, i.e. σ = b · σ′,
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for all σ ∈ B∞. For a function f : A → B, define a coalgebra cf : A
∞ → {⊥} ∪ (B ×A∞) by

cf (σ) :=

󰀫
⊥, if σ = 〈〉,
(f(a),σ′), if σ = a · σ′ for some a ∈ A and σ′ ∈ A∞,

for all σ ∈ A∞. Let f∞ : A∞ → B∞ be the unique function making

{⊥} ∪ (B ×A∞) {⊥} ∪ (B ×B∞)

A∞ B∞

id{⊥} ∪ (idB×f∞)

cf

∃!f∞

∼= nextB

commute. Then f(〈a0, a1, a2, a3, . . . 〉) = 〈f(a0), f(a1), f(a2), f(a3), . . . 〉 for all a0, a1, a2, a3, . . . ∈ A,
and analogously for finite sequences.

We see that cidA = nextA. So (idA)
∞ = idA∞ by finality of nextA. Furthermore, for functions

f : A → B and g : B → C, we see that

{⊥} ∪ (C ×A∞) {⊥} ∪ (C ×B∞)

A∞ B∞

id{⊥} ∪ (idC×f∞)

cg◦f

f∞

cg

commutes. Consequently, the outer square in the diagram

{⊥} ∪ (C ×A∞) {⊥} ∪ (C ×B∞) {⊥} ∪ (C × C∞)

A∞ B∞ C∞

id{⊥} ∪ (idC×f∞) id{⊥} ∪ (idC×g∞)

cg◦f

f∞

cg

g∞

nextC∼=

commutes, i.e.
nextC ◦ (g∞ ◦ f∞) =

󰀃
id{⊥} ∪ (idC × (g∞ ◦ f∞))

󰀄
◦ cg◦f .

The finality of nextC then yields (g ◦ f)∞ = g∞ ◦ f∞.

Exercise 1.2.10
Use finality to define a map st : A∞ × B → (A × B)∞ that maps a sequence σ ∈ A∞ and an element
b ∈ B to a new sequence in (A×B)∞ by adding this b at every position in σ. (This is an example of a
‘strength’ map; see Exercise 2.5.4.

Solution. Define a coalgebra c : A∞ ×B → {⊥} ∪
󰀃
(A×B)× (A∞ ×B)

󰀄
as follows:

c(σ, b) :=

󰀫
⊥, if σ = 〈〉,󰀃
(a, b), (σ′, b)

󰀄
, if σ = a · σ′ for some a ∈ A and σ′ ∈ A∞,
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for all σ ∈ A∞ and b ∈ B. The unique function st : A∞ ×B → (A×B)∞ making

{⊥} ∪
󰀃
(A×B)× (A∞ ×B)

󰀄
{⊥} ∪

󰀃
(A×B)× (A×B)∞

󰀄

A∞ ×B (A×B)∞

id{⊥} ∪ (idA×B×st)

c

∃!st

next∼=

commute will satisfy st(〈a0, a1, a2, . . . 〉, b) = 〈(a0, b), (a1, b), (a2, b), . . . 〉 for all a0, a1, a2, a3, . . . ∈ A and
b ∈ B, and analagously for finite sequences in A∞.

1.3 Generality of Temporal Logic of Coalgebras

Exercise 1.3.1
The nexttime operator ❡ introduced in (1.9) is the so-called weak nexttime. There is an associated
strong nexttime, given by ¬ ❡¬. Note the difference between weak and strong nexttime for sequences.

Solution. Recall that, for a sequence coalgebra c : S → {⊥} ∪ (A× S) and a predicate P ⊆ S, we have

( ❡P )(x) if and only if c(x) = ⊥ or c(x) ∈ A× P,

for all x ∈ S. So,
( ❡¬P )(x) if and only if c(x) = ⊥ or c(x) ∈ A× (S \ P ),

and thus
(¬ ❡¬P )(x) if and only if c(x) ∕= ⊥ and c(x) /∈ A× (S \ P ).

Since the codomain of c is {⊥} ∪ (A× S), and since P ⊆ S, we can equivalently write this as

(¬ ❡¬P )(x) if and only if c(x) ∈ A× P.

Exercise 1.3.2
Prove that the ‘truth’ predicate that always holds is a (sequence) invariant. And if P1 and P2 are
invariants, then so is the intersection P1 ∩ P2. Finally, if P is an invariant, then so is ❡P .

Solution. Fix a sequence coalgebra c : S → {⊥}∪ (A×S). The truth predicate is the set S itself. Then,
for all x ∈ S,

( ❡S)(x) if and only if c(x) = ⊥ or c(x) ∈ A× S.

Since the codomain of c is {⊥} ∪ (A× S), this means that ❡S = S, and so S is an invariant.
Now suppose that P1 and P2 and invariant, i.e. P1 ⊆ ❡P1 and P2 ⊆ ❡P2. Then, for all x ∈ S,

( ❡(P1 ∩ P2))(x) if and only if c(x) = ⊥ or c(x) ∈ A× (P1 ∩ P2)

if and only if c(x) = ⊥ or c(x) ∈ (A× P1) ∩ (A× P2)

if and only if
󰀃
c(x) = ⊥ or c(x) ∈ A× P1

󰀄
and

󰀃
c(x) = ⊥ or c(x) ∈ A× P2)

󰀄

if and only if ( ❡P1)(x) and ( ❡P2)(x).

Hence P1 ∩ P2 ⊆ ( ❡P1) ∩ ( ❡P2) = ❡(P1 ∩ P2), and so P1 ∩ P2 is also invariant.
Finally, suppose that P is invariant, i.e. P ⊆ ❡P . We aim to show that ❡P ⊆ ❡❡P . Suppose x ∈ S

is such that ( ❡P )(x) holds. Then either c(x) = ⊥ or c(x) ∈ A × P ⊆ A × ❡P . Therefore ( ❡❡P )(x)
holds.
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Exercise 1.3.3

1. Show that □ is an interior operator, i.e. satisfies: □P ⊆ P , □P ⊆ □□P , and P ⊆ Q =⇒ □P ⊆
□Q.

2. Prove that a predicate P is invariant if and only if P = □P .

Solution. Fix a sequence coalgebra c : S → {⊥} ∪ (A × S). Recall that the henceforth operator □ is
defined on predicates P ⊆ S as follows: for all x ∈ S,

(□P )(x) if and only if there exists an invariant Q ⊆ S with x ∈ Q ⊆ P .

In other words, □P is the union of all invariants contained in P .

1. If x ∈ □P , then there is an invariant Q ⊆ S with x ∈ Q ⊆ P . So x ∈ P too. Also, Q is an
invariant with x ∈ Q ⊆ □P . So x ∈ □□P as well. Thus □P ⊆ P and □P ⊆ □□P .

Now suppose P ⊆ Q ⊆ S. Then, for any x ∈ □P , there is an invariant R ⊆ S with x ∈ R ⊆
P ⊆ Q. So x ∈ □Q as well. Therefore □P ⊆ □Q.

2. For the forward direction, suppose that P is invariant. By definition, □P is the union of all
invariants contained within P . As P is assumed to be an invariant, we must have □P = P .

For the converse direction, suppose that □P = P . We need to show that P is an invariant, i.e.
P ⊆ ❡P . For any x ∈ P = □P , there exists an invariant Q ⊆ S with x ∈ Q ⊆ P . As Q is an
invariant, either c(x) = ⊥ or c(x) ∈ A × Q ⊆ A × P . Hence we also have x ∈ ❡P . Therefore
P ⊆ ❡P , meaning P is an invariant.

Exercise 1.3.4
Recall the finite behaviour predicate ♦

󰀃
(−) ∕→

󰀄
from Example 1.3.4.1 and show that it is an invariant:

♦
󰀃
(−) ∕→

󰀄
⊆ ❡♦󰀃(−) ∕→

󰀄
. Hint: For an invariant Q, consider the predicate Q′ =

󰀃
¬(−) ∕→

󰀄
∩ ( ❡Q).

Solution. Fix a sequence coalgebra c : S → {⊥}∪(A×S). Recall that, for a predicate P ⊆ S and x ∈ S,

(♦P )(x) if and only if for all invariants Q ⊆ S, we have ¬Q(x) or Q ∕⊆ ¬P .

That is, ♦P = ¬□¬P .
Suppose x ∈ S is such that ♦

󰀃
x ∕→

󰀄
holds. We need to show that ❡♦󰀃x ∕→

󰀄
holds, i.e. if x a−→ x′

for some (a, x′) ∈ A× S, then ♦
󰀃
x′ ∕→

󰀄
also holds. Fix any invariant Q ⊆ S with Q ⊆ ¬

󰀃
(−) ∕→

󰀄
. We

need to show that ¬Q(x′).
Following the hint, we consider the predicate

Q′ := ¬
󰀃
(−) ∕→

󰀄
∩ ( ❡Q).

Observe that Q′ is an invariant: if y ∈ S satisfies Q′(y), then there is some (b, y′) ∈ A × S such that
y

b−→ y′ and Q(y′) hold. Then, since Q ⊆ ¬
󰀃
(−) ∕→

󰀄
and Q is an invariant, we conclude that Q′(y′) also

holds. So Q′ ⊆ ❡Q′.
Hence if Q(x′) holds, then Q′(x) holds too, contradicting the assumption that ♦

󰀃
x ∕→

󰀄
.

Exercise 1.3.5
Let (A,≤) be a complete lattice, i.e. a poset in which each subset U ⊆ A has a join

󰁚
U ∈ A. It is well

known that each subset U ⊆ A then also has a meet
󰁙

U ∈ A, given by
󰁙

U =
󰁚
{ a ∈ A | ∀b ∈ U.a ≤ b }.
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Let f : A → A be a monotone function: a ≤ b implies f(a) ≤ f(b). Recall, e.g. from Davey and
Priestley (1990, Chapter 4) that such a monotone f has both a least fixed point µf ∈ A and a greatest
fixed point νf ∈ A given by the formulas:

µf =
󰁡

{ a ∈ A | f(a) ≤ a }, νf =
󰁢

{ a ∈ A | a ≤ f(a) }.

Now let c : S → {⊥} ∪ (A×A) be an arbitrary sequence coalgebra, with associated nexttime operator ❡.
1. Prove that ❡ is a monotone function P(S) → P(S), i.e. that P ⊆ Q implies ❡P ⊆ ❡Q, for all

P,Q ⊆ S.

2. Check that □P ∈ P(S) is the greatest fixed point of the function P(S) → P(S) given by U 󰀁→
P ∩ ❡U .

3. Define for P,Q ⊆ S a new predicate P U Q ⊆ S, for ‘P until Q’ as the least fixed point of
U 󰀁→ Q ∪ (P ∩ ¬ ❡¬U). Check that ‘until’ is indeed a good name for P U Q, since it can be
described explicitly as

P U Q = {x ∈ S | ∃n ∈ N.∃x0, x1, . . . , xn ∈ S.

x0 = x ∧ (∀i < n.∃a.xi
a−→ xi+1) ∧Q(xn)

∧ ∀i < n.P (xi) }.

Hint: Don’t use the fixed point definition µ, but first show that this subset is a fixed point, and
then that it is contained in an arbitrary fixed point.

(The fixed point definitions that we described above are standard in temporal logic; see e.g. Emerson
(1990, 3.24–3.25). The above operation U is what is called the ‘strong’ until. The ‘weak one’ does not
have the negations ¬ in its fixed-point description in point 3.)

Solution.

1. For subsets P,Q ∈ P(S) with P ⊆ Q, and for x ∈ S such that ( ❡P )(x) holds, we have

c(x) = ⊥ or c(x) ∈ A× P.

From the assumption that P ⊆ Q, it follows that

c(x) = ⊥ or c(x) ∈ A×Q,

or equivalently, ( ❡Q)(x).

2. Fix P ∈ P(S) and define fP : P(S) → P(S) by fP (U) := P ∩ ❡U for all U ∈ P(S). Then the
greatest fixed point of fP is

ν(fP ) :=
󰁞

U∈P(S),
U⊆fP (U)

U =
󰁞

U∈P(S),
U⊆P ∩ ❝U

U = □P.

3. Fix P,Q ∈ P(S), and define fP,Q : P(S) → P(S) by

fP,Q(U) := Q ∪ (P ∩ ¬ ❡¬U)
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for all U ∈ P(S). Recall, from Exercise 1.3.1, that

¬ ❡¬U = {x ∈ S : c(x) ∈ A× U }.

We wish to show that the set

UP,Q := Q ∪
󰁱
x ∈ S : there exist n ∈ Z>0, x0, . . . , xn ∈ S and a0, . . . , an−1 ∈ A

such that x = x0
a0−→ · · · an−1−−−→ xn and

P (x0), . . . , P (xn−1), and Q(xn) all hold
󰁲

is the least fixed point of fP,Q.

First, observe that

fP,Q(UP,Q) = Q ∪ (P ∩ ¬ ❡¬UP,Q)

= Q ∪ (P ∩ {x ∈ S : c(x) ∈ A× UP,Q })
= Q ∪ {x ∈ S : P (x) and c(x) ∈ A× UP,Q }
= UP,Q,

so that UP,Q is indeed a fixed point of fP,Q.

Now we show that UP,Q is the least fixed point of fP,Q. Fix some B ⊆ S with fP,Q(B) = B, i.e.

Q ∪ {x ∈ S : P (x) and c(x) ∈ A×B } = B.

Then we get UP,Q ⊆ B by induction on the length of finite sequences x0, . . . xn ∈ S and
a0, . . . , an−1 ∈ A satisfying x0

a0−→ · · · an−1−−−→ xn, and P (x0) ∧ · · · ∧ P (xn−1) ∧Q(xn).

1.4 Abstractness of Coalgebraic Notions

Exercise 1.4.1
Let (M,+, 0) be a monoid, considered as a category. Check that a functor F : M → Sets can be
identified with a monoid action: a set X together with a function µ : X ×M → X with µ(x, 0) = x
and µ(x,m1 +m2) = µ(µ(x,m2),m1).

Solution. Suppose we are given functor F : M → X. This F sends the unique object 󰂏 ∈ Obj(M) to a
set F (󰂏) ∈ Obj(Sets), and sends each m ∈ Arr(M) to a function Fm : F (󰂏) → F (󰂏). The functoriality
of F requires that F (0) = idF (󰂏) and F (m1 +m2) = F (m1) ◦ F (m2) for all m1,m2 ∈ Arr(M). We then
define a function µF : F (󰂏)× Arr(M) → F (󰂏) by µF (x,m) := F (m)(x) for all (x,m) ∈ F (󰂏)×M .

The equality µF (x, 0) = x for all x ∈ F (󰂏) follows the equality F (0) = idF (󰂏), while the equality
µF (x,m1 + m2) = µF (µF (x,m2),m1) for all x ∈ X and m1,m2 ∈ Arr(M) follows from the equality
F (m1 +m2) = F (m1) ◦ F (m2).

Now suppose we are given also given a set X and a function µ : X × Arr(M) → X with µ(x, 0) = x
and µ(x,m1 +m2) = µ(µ(x,m2),m1) for all x ∈ X and m,m1,m2 ∈ Arr(M). We then define a functor
Fµ : M → Sets by Fµ(󰂏) := X, for the unique object 󰂏 ∈ Obj(M), and Fµ(m) := µ(−,m) for each
m ∈ Arr(M). That Fµ is actually a functor follows from the assumptions on µ.

We then have FµF = F and µFµ = µ.

Exercise 1.4.2
Check in detail that the opposite Cop and the product C× D are indeed categories.
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Solution. Let C and D be categories.
We defined Obj(Cop) := Obj(C). For X,Y ∈ Obj(C), write homC(X,Y ) for the set of all morphisms

with domain X and codomain Y . We then defined homCop(X,Y ) := homC(Y,X), and we defined a
compositition X

f←− Y
g←− Z in Cop to be the composition X

f−→ Y
g−→ Z in C. The associativity and

identity laws for composition in Cop follow from those for C.
We defined Obj(C × D) := Obj(C) × Obj(D). For X,X ′ ∈ Obj(C) and Y, Y ′ ∈ Obj(D), we let

homC×D((X,Y ), (X ′, Y ′)) := homC(X,X ′)× homD(Y, Y
′). A composition (X,Y )

(f,g)−−−→ (X ′, Y ′)
(f ′,g′)−−−−→

(X ′′, Y ′′) in C × D is defined to be the composition (X,Y )
(f ′f, g′g)−−−−−→ (X ′′, Y ′′). For an object (X,Y )

in C × D, the identity morphism id(X,Y ) is the pair (idX , idY ). The associativity and identity laws for
composition in C× D follow from those for C and D.

Exercise 1.4.3
Assume an arbitrary category C with an object I ∈ C. We form a new category C/I, the so-called slice
category over I, with

objects maps f : X → I with codomain I in C

morphisms from X
f−→ I to Y

g−→ I are morphisms h : X → Y in C for which the following
diagram commutes:

X Y

I

h

f g

1. Describe identities and composition in C/I, and verify that C/I is a category.

2. Check that taking domains yields a functor dom: C/I → C.

3. Verify that for C = Sets, a map f : X → I may be identified with an I-indexed family of sets
(Xi)i∈I , namely where Xi = f−1(i). What do morphisms in C/I correspond to, in terms of such
indexed families?

Solution.

1. The identities and composition in C/I are simply the identities and composition in C. So the fact
that C/I is a category follows from C being a category.

2. We define dom: C/I → C as follows: for a morphism h from X
f−→ I to Y

g−→ I in C/I, we simply
define dom(h) := h. This immediately makes dom a functor from C/I to C.

3. The claimed identification is obvious. Now fix a morphism h from X
f−→ I to Y

g−→ I in Sets/I,
so that the diagram

X Y

I

h

f g

in Sets commutes. This requires that g(h(x)) = f(x) for all x ∈ X. Identifying Xi := f−1(i) and
Yi := g−1(i) for all i ∈ I, we can identify h with a family of functions (hi)i∈I such that hi(x) ∈ Yi
for all x ∈ Xi, for all i ∈ I.

18



Exercise 1.4.4
Recall that for an arbitrary set A we write A󰂏 for the set of finite sequencees 〈a0, . . . , an〉 of elements
ai ∈ A.

1. Check that A󰂏 carries a monoid structure given by concatenation of sequences, with the empty
sequence 〈〉 as a neutral element.

2. Check that the assignment A 󰀁→ A󰂏 yields a functor Sets → Mon by mapping a function f : A →
B between sets to the function f󰂏 : A󰂏 → B󰂏 given by 〈a0, . . . , an〉 󰀁→ 〈f(a0), . . . , f(an)〉. (Be
aware of what needs to be checked: f󰂏 must be a monoid homomorphism, and (−)󰂏 must preserve
composition of functions and identity functions.)

3. Prove that A󰂏 is the free monoid on A: there is the singleton-sequence insertion map η : A → A󰂏

which is universal among all mappings of A into a monoid. The latter means that for each monoid
(M, 0,+) and function f : A → M there is a unique monoid homomorphism g : A󰂏 → M with
g ◦ η = f .

Solution.

1. Concatenation is associative because all the sequences under consideration are finite.

2. That (−)󰂏 preserves composition and identity functions is obvious, so we just check that for a
function f : A → B, the map f󰂏 : A󰂏 → B󰂏 is a monoid homomorphism. Fix finite sequences
〈a0, . . . , an〉, 〈a′0, . . . , a′k〉 ∈ A󰂏. Then

f(〈a0, . . . , an〉 · 〈a′0, . . . , a′k〉) = f(〈a0, . . . , an, a′0, . . . , a′k〉)
= 〈f(a0), . . . , f(an), f(a′0), . . . , f(a′k)〉
= 〈f(a0), . . . , f(an)〉 · 〈f(a′0), . . . , f(a′k)〉
= f(〈a0, . . . , an〉) · 〈a′0, . . . a′k〉)

and f(〈〉) = 〈〉. So f󰂏 is a monoid homomorphism.

3. Define η : A → A󰂏 by η(a) := 〈a〉 for all a ∈ A. Fix a monoid (M, 0,+) and a function f : A → M .
Define g : A󰂏 → M by

g(〈〉) := 0

g(〈a0, . . . , an〉) := f(a0) + · · ·+ f(an)

for all 〈a0, . . . , an〉 ∈ A󰂏. This g is clearly a mononid homomorphism, using the associativity of +
in M . Observe that the diagram

A A󰂏

M

η

f
g

in Sets commutes: we have f(a) = g(η(a)) for all a ∈ A. Now suppose that there is another
monoid homomorphism h : A󰂏 → M such that the diagram

A A󰂏

M

η

f
h
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in Sets commutes. As h : A󰂏 → M is a monoid homomorphism and f = hη, we require that
h(〈〉) = 0 and

h(〈a0, . . . , an〉) = h(〈a0〉 · . . . · 〈an〉)
= h(〈a0〉) + · · ·+ h(〈an〉)
= h(η(a0)) + · · ·+ h(η(an))

= f(a0) + · · ·+ f(an)

= g(〈a0, . . . , an〉),

for all 〈a0, . . . , an〉 ∈ A󰂏. Therefore h = g.

Exercise 1.4.5
Recall from (1.3) the statements with exceptions of the form S → {⊥} ∪ S ∪ (S × E).

1. Prove that the assignment X 󰀁→ {⊥} ∪ X ∪ (X × E) is functorial, so that the statements are a
coalgebra for this functor.

2. Show that all the operations at1, . . . , atn,meth1, . . . ,methm of a class as in (1.10) can also be
described as a single coalgebra, namely of the functor:

X 󰀁→ D1 × · · ·×Dn × ({⊥} ∪X ∪ (X × E))× · · ·× ({⊥} ∪X ∪ (X × E))󰁿 󰁾󰁽 󰂀
m times

.

Solution.

1. Let F : Sets → Sets denote this assignment F (X) := {⊥} ∪ X ∪ (X × E) where all unions
are disjoint unions. We define F on morphisms as follows: for functions f : X → Y , we define
F (f) : F (X) → F (Y ) to be the function

F (f)(x) :=

󰀻
󰁁󰀿

󰁁󰀽

⊥, if x = ⊥,

f(x), if x ∈ X,

(f(x′), e), if x = (x′, e) for some (x′, e) ∈ X × E.

Then F (idX) = idF (X) and F (gf) = F (g)F (f) for all sets X and functions X
f−→ Y

g−→ Z.

2. The functor’s definition on morphisms is similar in style with the previous part.

Exercise 1.4.6
Recall the nexttime operator ❡ for a sequence coalgebra c : S → Seq(S) = {⊥} ∪ (A × S) from the
previous section. Exercise 1.3.5.1 says that it forms a monotone function P(S) → P(S) — with respect
to the inclusion order — and thus a functor. Check that invariants are precisely ❡-coalgebras!
Solution. The ❡-coalgebras are simply a subsets U ⊆ S such that U ⊆ ❡U . These are precisely what
invariants are.
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2 Coalgebras of Polynomial Functors

2.1 Constructions on Sets

Exercise 2.1.1
Verify in detail the bijective correspondences (2.2), (2.6), (2.11) and (2.16).

Solution. #??

Exercise 2.1.2
#??

Solution. #??

Exercise 2.1.3
#??

Solution. #??

Exercise 2.1.4
#??

Solution. #??

Exercise 2.1.5
#??

Solution. #??

Exercise 2.1.6
#??

Solution. #??

Exercise 2.1.7
#??

Solution. #??

Exercise 2.1.8
#??

Solution. #??

Exercise 2.1.9
#??

Solution. #??

Exercise 2.1.10
#??

Solution. #??

Exercise 2.1.11
#??
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Solution. #??

Exercise 2.1.12
#??

Solution. #??

Exercise 2.1.13
#??

Solution. #??

Exercise 2.1.14
#??

Solution. #??

2.2 Polynomial Functors and Their Coalgebras

Exercise 2.2.1
#??

Solution. #??

Exercise 2.2.2
#??

Solution. #??

Exercise 2.2.3
#??

Solution. #??

Exercise 2.2.4
#??

Solution. #??

Exercise 2.2.5
#??

Solution. #??

Exercise 2.2.6
#??

Solution. #??

Exercise 2.2.7
#??

Solution. #??

Exercise 2.2.8
#??
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Solution. #??

Exercise 2.2.9
#??

Solution. #??

Exercise 2.2.10
#??

Solution. #??

Exercise 2.2.11
#??

Solution. #??

Exercise 2.2.12
#??

Solution. #??

2.3 Final Coalgebras

Exercise 2.3.1
#??

Solution. #??

Exercise 2.3.2
#??

Solution. #??

Exercise 2.3.3
#??

Solution. #??

Exercise 2.3.4
#??

Solution. #??

Exercise 2.3.5
#??

Solution. #??

Exercise 2.3.6
#??

Solution. #??

Exercise 2.3.7
#??
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Solution. #??

Exercise 2.3.8
#??

Solution. #??

2.4 Algebras

Exercise 2.4.1
#??

Solution. #??

Exercise 2.4.2
#??

Solution. #??

Exercise 2.4.3
#??

Solution. #??

Exercise 2.4.4
#??

Solution. #??

Exercise 2.4.5
#??

Solution. #??

Exercise 2.4.6
#??

Solution. #??

Exercise 2.4.7
#??

Solution. #??

Exercise 2.4.8
#??

Solution. #??

Exercise 2.4.9
#??

Solution. #??

Exercise 2.4.10
#??

Solution. #??
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2.5 Adjunctions, Cofree Coalgebras, Behaviour-Realisation

Exercise 2.5.1
#??

Solution. #??

Exercise 2.5.2
#??

Solution. #??

Exercise 2.5.3
#??

Solution. #??

Exercise 2.5.4
This exercise describes ‘strength’ for endofunctors on Sets. In general, this is a useful notion in the
theory of datatypes (Cockett and Spencer, 1992), (Cockett and Spencer, 1995) and of computations
(Moggi, 1991); see Section 5.2 for a systemic description.

Let F : Sets → Sets be an arbitrary functor. Consider for sets X,Y the strength map

F (X)× Y F (X × Y )

(u, y) F (λx ∈ X.(x, y))(u)

stX,Y

1. Prove that this yields a natural transformation F (−)×(−)
st
=⇒ F ((−)×(−)), where both the domain

and codomain are functors Sets× Sets → Sets.

2. Describe this strength map for the list functor (−)󰂏 and for the powerset functor P.

Solution. #??

Exercise 2.5.5
#??

Solution. #??

Exercise 2.5.6
#??

Solution. #??

Exercise 2.5.7
#??

Solution. #??

Exercise 2.5.8
#??

Solution. #??
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Exercise 2.5.9
#??

Solution. #??

Exercise 2.5.10
#??

Solution. #??

Exercise 2.5.11
#??

Solution. #??

Exercise 2.5.12
#??

Solution. #??

Exercise 2.5.13
#??

Solution. #??

Exercise 2.5.14
#??

Solution. #??

Exercise 2.5.15
#??

Solution. #??

Exercise 2.5.16
#??

Solution. #??

Exercise 2.5.17
#??

Solution. #??
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3 Bisimulations

3.1 Relation Lifting, Bisimulations and Congruences

Exercise 3.1.1
#??

Solution. #??

Exercise 3.1.2
#??

Solution. #??

Exercise 3.1.3
#??

Solution. #??

Exercise 3.1.4
#??

Solution. #??

Exercise 3.1.5
#??

Solution. #??

Exercise 3.1.6
#??

Solution. #??

3.2 Properties of Bisimulations

Exercise 3.2.1
#??

Solution. #??

Exercise 3.2.2
#??

Solution. #??

Exercise 3.2.3
#??

Solution. #??

Exercise 3.2.4
#??

Solution. #??
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Exercise 3.2.5
#??

Solution. #??

Exercise 3.2.6
#??

Solution. #??

Exercise 3.2.7
#??

Solution. #??

3.3 Bisimulations as Spans and Cospans

Exercise 3.3.1
#??

Solution. #??

Exercise 3.3.2
#??

Solution. #??

Exercise 3.3.3
#??

Solution. #??

Exercise 3.3.4
#??

Solution. #??

3.4 Bisimulations and the Coinduction Proof Principle

Exercise 3.4.1
#??

Solution. #??

Exercise 3.4.2
#??

Solution. #??

Exercise 3.4.3
#??

Solution. #??

Exercise 3.4.4
#??
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Solution. #??

Exercise 3.4.5
#??

Solution. #??

Exercise 3.4.6
#??

Solution. #??

Exercise 3.4.7
#??

Solution. #??

3.5 Process Semantics

Exercise 3.5.1
#??

Solution. #??

Exercise 3.5.2
#??

Solution. #??

Exercise 3.5.3
#??

Solution. #??

Exercise 3.5.4
#??

Solution. #??
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