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1 Motivation

1.1 Naturalness of Coalgebraic Representations

Exercise 1.1.1

1. Prove that the composition operation ; as defined for coalgebras S — {L} U S is associative, i.e.
satisfies s1; (s2; 83) = (815 S2); 83, for all statements s1,s2,83: S — {L}US.
Define a statement skip: S — {L} U S which is a unit for composition ; i.e. which satisfies
(skip; s) = s = (s; skip), for all s: S — {L}US.

2. Do the same for ; defined on coalgebras S — {L} U S U (S x E).
(In both cases, statements with an associative composition operation and a unit element form a
monoid. )

Solution.

1. Recall that the composition operation ; was defined as follows:

L, if s(z)
t(z") if s(x)

1
s;t::)\azes.{ K
x

€8,

for coalgebras s,t: S — {1} US. Fix any three coalgebras s, s2,s3: S — {L}US. Then

1, if s1(z) = L,
51 (523 83) = Aw € 5. {(32; s3)(a'), if si(z) =2’ €S,
s {J_, if either s1(z) = L, or both s1(z) =2’ € S and sa(2’) = L,
s3(2”), if s1(x) =2' € S and so(2') = 2" € S,
Cwes {J_, if (s15 82)(x) = L,
sg(a), if (s1; s2)(x) =2" €S,

= (s1; s2); S3.

So the composition operation ; is associative.
The coalgebra skip: S — {L}US defined by skip(x) := z, for all z € S, satisfies (skip; s) = s =
(s; skip) for all coalgebras s: S — {L}US.

2. Now we consider the composition operation ; defined as follows:
1, if s(x)

s;ti=AreS qt(x), if s(x) €S,
(a,e), if s(z)=(2',e) € S X E,

€L,
{E/

for coalgebras s,t: S — {L}USU(S x E). Fix any three coalgebras sy, s2,s3: {L}USU(S x E).

Then
1, if s1(x) =L,
s1; (s2383) = Ax € 5.4 (825 s3)(2'), ifsi(x)=12" €85,
(2, e), if s1(z) = (2/,e) € S x E,



;

1, if either s1(z) = L, or both s1(x) =2’ € S and sy(2) = L,
sg(2”), if s1(x) =2’ € S and sqo(2’) = 2" € S,
(”,e), if si(z) =2' € S and s2(2) = (2”,e) € S X E,
(@', e), ifsl(x)z(a:',e)eSxE,
1, if (s1; s2)(x) =
=z € 5.4 s3(2”), if (s1; s2)(x) —x”eS
L(:B”,e), if (s1;82)(x) = (2",e) € S X E,

= (s1; 52); S3-

=)\xeS.

So this composition operation ; is also associative.

Now define the coalgebra skip: S — {L}USU (S x E) by skip(z) = z, for all x € S. Then we
have (skip; s) = s = (s; skip) for all coalgebras s: S — {L} USU (S x E). O

Exercise 1.1.2
Define also a composition monoid (skip, ;) for coalgebras S — P(S).

Solution. For coalgebras s,t: S — P(S), define

s;t:)\xES.( U t(y))
yes(z)

Then, for coalgebras si, s2,s3: .S — P(S5), we have

s1; (s2383) =Av eS| [J (s2; 83)(y))

y€si(z)

yesi(z) 2682(:!})

=Axr € S. U U )

=Xz eS. U 53(,2))
)(@)

z€(s1;82)(x

= (515 52); S3-

Furthermore, defining skip: S — P(S) by skip(x) := {x} for all 2 € S, we have

(skip;s)/\:EES.( U 5(9))

yEskip(z)

—)\a:ES.( U s(y))
ye{z}

= Az € S.s(x)

=S



and

(s; skip) = Az € S. U skip(y)

y€s(z)
=X eb. U {y}
y€s(z)
= Az € S.s(x)

= S.

1.2 The Power of Coinduction

Exercise 1.2.1
Compute the nextdec-behaviour of% €[0,1) as in Example 1.2.2.

Solution. We first recall all of the following functions.

1. The final coalgebra next: {0,...,9}> — {L} U ({0,...,9} x {0,...,9}*) is defined by

() 1, if o is the empty sequence,
next(o) ==
(d,o’), if o has head d € {0,...,9} and tail ¢’ € {0,...,9}*,ie. 0 =d -0,

for all (finite or infinite) sequences o € {0,...,9}>.

2. The coalgebra nextdec: [0,1) — {1} U ({0,...,9} x [0,1)) is defined by

4, if r =0,

nextdec(r) :=
dects) {(d,mr_d), ifd<10r <d+1andde{0,....9}

for all r € [0, 1).

3. The function behpeytdec: [0,1) — {0,...,9}° is the unique function making
ld{J_} U (ld{O ,,,,, 9} ><behnextdec) )
{L}U ({0,...,9} x [0,1)) ---"==-----2222iooTiooy » {LYU ({0,...,9} x {0,...,9}>)
nextdec/[ N[next
[0, 1) = m e s {0,...,9}%

3!behnextdec

commute.

We wish to compute behnextdec(%). We see that

1 (/. . 1
behnextdec <?> = next ((1(1{1_} U (ld{O,...,Q} X behnextdeC)) (nEXtdec<?>>>
= next”! (id{J_} U (idgo,....01 ¥ behnextdec)) 1 3
EARRS] ) 7



= next ! < (1, behnextdec <%> > >
3
=1 behnextdec (?) .
Continuing in this fashion,
1 3
behnextdec (?) =1- behnextdec (?)
=1-(4-beh 2
= €lpextdec =
1- <4 : <2 - behpextdec <§> >>
7
4
(1 (2 (sobetren(7))))
5
(1 (2 (5 (5rmmnse (7))
7
(e (2 (5 (o0 (7ovenmnsn(7))))))

Therefore behnextdec (1) = (1,4,2,8,5,7,1,4,2,8,5,7,1,4,2,8,5,7,...).

I

2.
2.

8
8

O

Exercise 1.2.2
Formulate appropriate rules for the function odds: A — A in analogy with the rules (1.7) for evens.

Solution. We recall that, for a sequence o = (ag,a1,as,a3,...) € A, the function odds satisfies
odds(o) = (a1, as,as,...), and analogously if o is a finite sequence. The rules we want odds to satisfy
are:

_or
odds(o) 4

i.e. odds should send the empty sequence to the empty sequence;

oo o 4
odds(o) /4

i.e. odds should send a singleton sequence (a) to the empty sequence; and

!
a a
o — o o — o

odds(o) <, odds(d”)

ie. ifo=a-d -0 € A, where a,a’ € A, then odds(c) = a’ - odds(c”). O

Exercise 1.2.3
Use coinduction to define the empty sequence () € A* as a map {L} — A>.

Fix an element a € A, and similarly define the infinite sequence a: {L} = A consisting of only
as.



Solution. We recall that the final coalgebra next: A — {1} U (A x A*) is defined by

t(0) 1, if o is the empty sequence,
next(o) ==
(a,0’), if o has head a € A and tail ' € A® ie. 0 =a-0’,

for all (finite or infinite) sequences o € A°.
For the coalgebra ¢1: {L} — { L}U(Ax{L}) defined by ¢1(L) := L, the unique function beh,, : { L} —
A% making

{LIUAX{L}) s s {L}U (A x A%)
{J-} ““““““““ 3 ‘!B;}L—l —————————————— > A

commute satisfies beh,, (L) = ().
For the coalgebra c,: {L} — {L} U (A x {L}) defined by c¢,(L) := (a,L), the unique function
behg, : {L} — A* making

{L}U(Ax{L}) ——--=-7---mmmmmm=- » {L}U (A x A®)
ca[ = | next
{1} T 3mehe, y A
commute satisfies beh,, (L) = @ = (a,a,a,...). O

Exercise 1.2.4
Compute the outcome of merge({ag, a1, az), (bo, b1,b2,bs)).

Solution. Recall that we defined the coalgebra m: A® x A® — {L} U (A x (A>® x A>)) by

1, if 0 A and 7 A,
m(o,7) =< (a,(0,7')), ifo A and 7% 7/,
(a,(1,0"), ifo o,

for all 0,7 € A, and that merge: A® x A* — A is the unique function making

idg 1y U (idaxmerge)

{L}U (A X (A® X A®)) —-o-mmiem oo » {L}U (A x A®)
m)[ NTnext
AOO X AOO _______________ é!_n;e_réé ______________ ) AOO

commute. Then

merge((ag, a1, az), (by, b1, b2, b3)) = next_l((id{l} U (idg x merge))(m((ao,al,@), <b0,bl,b2,b3>)))



= next_l((id{l} U (ida x merge))((ao, ((bo, b1, b2, bs), <a1,a2>))))

= next ! ((ao, merge((bg, b1, ba, bs), <a1,02>)))
= a - merge((bo, bl, bg, b3>, <a1, a2>),
and so on. Eventually, we obtain merge({ao, a1, as2), (bo, b1, b2, b3)) = (ao, bo, a1, b1, az, b2, b3). O

Exercise 1.2.5
Is the merge operation associative, i.e. is merge(o, merge(T, p)) the same as merge(merge(o, ), p)? Give
a proof or a counterexample. Is there a neutral element for merge?

Solution. The merge operation is not associative:
merge((a), merge((b), (c)) = merge({a), (b, c))
- <aa ba C>,
whereas
merge(merge((a), (b)), (c)) = merge((a, b), (c))
- <a’7 C, b>a

for all a,b,c € A.
The neutral element for merge is the empty sequence: for any o € A*, we have merge(o, () =
merge((),0) = 0. O

Exercise 1.2.6
Show how to define an alternative merge function which alternatingly takes two elements from its argu-
ment sequences.

Solution. We will define a coalgebra mg: A x A® — {1} U (A x (A*° x A*)) so that the desired
merge function is the unique function merge,: A x A — A making

idg iy U (idaxmergey)

{L}U(A X (A% x A®)) ——--2cm—mmm i n 2o »y {L}U (A x A®)
mo 2 | next
A® X A® y A
Jlmerge,

commute. Asa motivating example, the desired merge of two infinite streams (ag, a1, ... ) and (bg, b1, ...)
should be

merges ({ag, a1, az,as,...), (by,b1,b2,bs,...)) = (ag, a1, bo, b1, az,as,ba, bz, ...).
As the diagram above commutes, we would require
mergeg(mg((ag,al,ag,ag, o)y (bo, b1, b2, b3, . .. >)) = (ao, (a1,bo, b1,as,as,be,bs, ... ))
and so my should be defined to satisfy
ma({(ag, a1, az,as,...), (by,b1,ba,b3,...)) = (ag, ((a1,bo,as,ba,...), (b1,a2,b3,ay,... ))

Dealing with edge cases separately leads us to the following definition: we define the coalgebra
ma: AP x A® — {L} U (A x (A® x A%)) as follows.



1. The function my sends the pair ({), ()) to L, i.e.
ma((), () = L.

2. If 7 € A% is a non-empty sequence, say 7 — 7' for some 7/ € A® and a € A, then

3. If o = (a) for some a € A, then

for all 7 € A*.
4. If 0 € A has at least length 2, say o — o’ s " for some o',0" € A*® and a,d’ € A, then
mo(o,7) = (a, (merge(odds(c), evens(7)), merge(odds(T),evens(a”))))

for all 7 € A*.
Now let merge,: A x A>*® — A% be the unique function which makes

idg1y U (idaxmergey)

{L}U (A X (A® x A®)) —---2mmmmm o220 » {L} U (A x A®)
m;[ "Wnext
AOO X AOO _______________H_h‘_n_e;g_e; ______________ ) AOO

commute. Fix any o,7 € A®. We argue by cases on (o,7) that this function merge, is the desired
merge function.

1. If o =7 = (), then mergey((), ()) = ().
2. If o = () and 7 is a non-empty sequence, say 7 = a - 7’ for some a € A and 7/ € A, then
merge,((),7) = a - merge,((), 7).
Thus mergey((),7) = 7.

3. If 0 = (a) for some a € A, then

mergey((a),7) = a - mergey((),7)

=a-T.
4. If o =a-a’ - 0" for some a,a’ € A and 0” € A, then
merge, (0, 7) = a - merge (merge(odds(a), evens(7)), merge (odds(7), evens(a”)))
= a - merge, (merge(a’ -odds(c”), evens(7)), merge (odds(7), evens(a”)))
=a-ad - merge, <merge(odds(merge(a' -odds(c0”), evens(7))),

evens(merge(odds(7), evens((f”)))) )

8



merge (odds(merge(odds(7), evens(c”))),
odds(merge(evens(7), odds(a”)))))
=a-d - merge, (merge(evens(T), odds(7)), merge(evens(c”), OddS(U”)))
=a-a -mergey(r,0”"),
as desired. =
Exercise 1.2.7

1. Define three functions ex;: A — A, for i = 0,1,2, which extract the elements at positions
3n + 1.

2. Define merge3: A x A® x A® — A satisfying the equation merge3(exq(o),ex;(0),exa(0)) =0,
for all o0 € A°.

Solution.

1. Define g, c1,c9: A — {L} U (A x A™®) as follows:

¢

1, if o =),
co(o) =< (a,()) if o =(a) or o = (a,d’) for some a,a’ € A,
(a,0), ifo o LINPVLIN o,
1, if 0 = () or 0 = (a) for some a € A,
ci(o) =< (d,() if o= (a,d) for some a,a’ € A,
K(a’,o"”), ifai>0’a—/>a”a—u>a”’,
{L, if o0 = (), or 0 = (a), or 0 = (a,d’) for some a,a’ € A,
ca(0) = e a g, d g d
(@ 0", ifo—=d —d"—o".

Then, for ¢ € {0,1,2}, the function ex;: A* — A is the unique function making

{L}U(A X A®) —-omimt » {L} U (A x A®)
ci 2 | next
AOO ________________ 3 _'éx_z _______________ ) AOO

commute.

2. Define the coalgebra mg: A® x A® x A® — {1} U (A x (A® x A® x A®)) by

J—> ifa‘:T:p:O’
a,((),(),p)), ifo=7=() andp 2 p/ for some a € A and p € A,
a,((),p, 7)), ifo= () andr 2 7/ for some a € A and 7/ € A®,

ms(o, T, p) = E
(

a,(t,p,0"), ifo % o’ for some a € A and o’ € A®.



Then we let merge3: A x A% x A — A* be the unique function making

idg 1y U (idaxmerge3)

{L}U (A X (A%® x A® x A®)) —---2ciommlooool »{L}U (A x A%)
ms3 2 | next
A% X AP X AP —ommmme 3 _'r_n:_‘;g_e_:’z “““““““ > A%

commute.

Let us prove that merge3(exg(o),exi(0),exa(0)) = o for all 0 € A, by coinduction. Consider
the function f: A% — A% x A% x A defined by f(c) == (exo(c), ex1(0),exz(0)) for all o € A>.
We wish to show that merge3 o f = id geo.

idf1y U (idaxmerge3)

{L}U (A x (A® x A® x A*>))
id{J_} U (idaxf)

(L} U (A x A4%)
{J_} U (A X Aoo) m3 = | next

next | = AOO X Aoo X Aoo Aoo
merge3
/

Let us first show that the left square commutes. It certainly commutes when we chase the empty
sequence: (mgo f)(()) = L = ((idg1yU(ida x f)) onext)(()). If o0 € A* is a non-empty sequence,

AOO

say o — o' for some a € A and o’ € A%, then we have

|
—e
[N
—~
-
-
C
=
[oN
b
3
~ S
~
SN—r
@)
>
[¢]
X
+
~—
—~

where the second-to-last equality can also be proven by coinduction. Therefore the outer square
commutes, and so

next o (merge3 o f) = ((idgyy U (ida x (merge3 o f))) o next.
The finality of the coalgebra next: A* — {L} U (A x A%°) now yields merge3 o f = id ge. O

Exercise 1.2.8
Consider the sequential composition function comp: A® x A® — A for sequences, described by the
three rules:

o7 T o/ 57
comp(o, 7) 7> comp(o, 7) = comp(o, ')

a /
g — 0

comp(o,7) = comp(o’, 7)

10



1. Show by coinduction that the empty sequence () = next (L) € A is a unit element for comp,
i.e. that comp((),0) = o = comp(o, ()).

2. Prove also by coinduction that comp is associative, and thus that sequences carry a monoid struc-
ture.

Solution.
1. Let f: A® — A be defined by f(o) := comp((), o). We will show that the diagram

id{i} U (idaxf)

{1} U (A x A%) {1} U (A x A%)

next)[\N "Inext

A 7 A

commutes, which would yield f = id e by the finality of the coalgebra next.

First, we chase the empty sequence from the bottom left. We see that

(next o £)({)) = next(comp({), ()))

— next(())
=1,

the first rule for comp, and

((idg1y U (ida x f)) o next)(() (ld{u U (ida x f)) (L)

Now if 0 € A® is a non-empty sequence, say o — o’ for some a € A and o’ € A, we see that

(next o f)(o) = next(comp({),a - c"))
= (a,comp((),0”))
= (a, f(o")),

by the second rule for comp and the definition of f, and

((id{J_} U (ida x f)) o next) (o) = ((id{l} U (idg x f)) ((a,a’))
= (a, f(0")).

Thus nexto f = (idg 3 U (ida x f)) o next. This proves that comp((), ) = o for all o € A>.

We now show the other equality, that comp(o, ()) = o for all o € A%, we will show that the
function g: A> — A* defined by g(o) := comp(o, ()) for all ¢ € A also satisfies

nextog = (id{l} U (ida x g)) o next.

That (nextog)(L) = ((id{_]_} U (ida x g)) onext)(.L) is the same as with f. Now if o € A> is such
that o % ¢’ for some a € A and ¢/ € A®, we see that

(next o g)(o) = next(comp(a - o', ())

11



= (a,comp(d”, ()))
= (a,9(0")),

by the third rule for comp and the definition of g, and
((id{l} U (idg x g)) o next) (o) = ((ld{J_} U (idg x g))) ((a, 0'/))
= (a,9(d")).
Therefore g = id g, i.e. comp(o, ()) = o for all 0 € A™.

2. We will define a coalgebra c¢: A x A® x A® — {L} U (A x (A® x A>® x A*)) such that the
functions h, k: A% x A® x A — A given by
h(o, T, p) = comp(o,comp(T,p)) and
k(o, 7, p) := comp(comp(o,7), ),

for all o, 7, p € A, are both coalgebra homomorphisms from ¢ to next.

id{J_} U (ida xh)

—

{L}U(A % (A® x A® x A®)) {L}U (A x A®)

\_/

id{J_} U (id4 xk)

c 2 | next
///_h\
A® x A® x A \—/ A>®
k

The finality of next would then yield h = k.
Define ¢: A% x A® x A® — {L} U (A x (A% x A>® x A*)) by

1, ifo=17=p=),
) (a0, 0,0), ifo=7=()and p=a-p for some a € A and p' € A,
o7 p) = (a,((),7",p)), ifoc={() and 7 =a-7' for some a € A and 7/ € A>,
(a,(¢',7,p)), ifoc=a-o for some a € Aand o’ € A.

Using the rules for comp, it is now elementary to check that A and k£ make their respective diagrams
commute. O

Exercise 1.2.9

Consider two sets A, B with a function f: A — B between them. Use finality to define a function
[ A® — B that applies f element-wise. Use uniqueness to show that this mapping f — f is
‘functorial’ in the sense that (id4)>° = idge and (go f)*° = g™ o f°.

Solution. For a (non-empty) set B, let nextg: B> — { L}U(B x B*®) denote the final coalgebra defined
by

ext(c) 1, if o is the empty sequence,
next(o) :=
(b,0’), if o has head b € B and tail 0/ € B>, ie. 0 =b-0’,

12



for all o € B*. For a function f: A — B, define a coalgebra cy: A% — {L} U (B x A>) by

s(0) = {J_, if o = (),

(f(a),0’), ifo=a-o for somea € A and o’ € A®,
for all 0 € A®. Let f*°: A>° — B be the unique function making

id{J_} U (idg X f°)

{L}U(B x A%) -t » {L}U (B x B)
cy =~ | nextp
AOO ________________EI_!}O_O _______________ ) BOO

commute. Then f({ag,a1,a2,as,...)) = (f(ao), f(a1), f(a2), f(as),...) for all ag,ai,as,as,... € A,
and analogously for finite sequences.

We see that ciq, = nextq. So (id4)> = idge by finality of nexts. Furthermore, for functions
f:A— Band g: B— C, we see that

id{J_} U (idgx f°)

{L}U(C x A®) {1} U (C x B®)

Cgof Cg

commutes. Consequently, the outer square in the diagram

id{J_} U (ide X f) id{J_} U (idgxg>)

[L}U(C x A®) {1YU(C x B®) {L}U(C x =)

Cgof Cg & | nextco

A>® — B = (O
f g

commutes, i.e.
nextc o (9% o %) = (idg1y U (ido x (9% 0 £))) © cgoy-
The finality of nextc then yields (g o f)*° = g™ o f>. O
Exercise 1.2.10
Use finality to define a map st: A® x B — (A x B)®> that maps a sequence o € A and an element

b € B to a new sequence in (A X B)*® by adding this b at every position in o. (This is an example of a
‘strength’ map; see Exercise 2.5.4.

Solution. Define a coalgebra c: A x B — {1} U ((A x B) x (A*® x B)) as follows:

c(o,b) = {J_’ if o=,

((a,b),(0",b)), if o =a-o for somea € A and o’ € A™,

13



for all 0 € A* and b € B. The unique function st: A* x B — (A x B)* making

{L}U ((A % B) x (A® X B)) -=--"=nmmm-toomaaiee » {L} U ((Ax B) x (A x B)™®)
c = [ next
A® X B ---mmmmmmmme o ST > (A x B)™®
commute will satisfy st({(ag, a1, as,...),b) = ((ap,b), (a1,b), (az,b),...) for all ap,ar,az,as,... € A and
b € B, and analagously for finite sequences in A*. O

1.3 Generality of Temporal Logic of Coalgebras

Exercise 1.3.1
The nexttime operator O introduced in (1.9) is the so-called weak nexttime. There is an associated
strong nexttime, given by -O—. Note the difference between weak and strong nexttime for sequences.

Solution. Recall that, for a sequence coalgebra ¢: S — {L} U (A x S) and a predicate P C S, we have
(OP)(z) ifand only if c¢(x) =L orc(x) € Ax P,
for all x € S. So,
(O0=P)(z) ifand onlyif c(x)= L orec(x) € Ax (S\P),

and thus
(=O=P)(x) if and only if ¢(z) # L and ¢(x) ¢ A x (S\ P).

Since the codomain of cis {L} U (A x S), and since P C S, we can equivalently write this as
(=O=P)(x) if and only if ¢(z) € A x P. O

Exercise 1.3.2
Prove that the ‘truth’ predicate that always holds is a (sequence) invariant. And if Py and Py are
invariants, then so is the intersection Py N Py. Finally, if P is an invariant, then so is OP.

Solution. Fix a sequence coalgebra c: S — { L} U(A x S). The truth predicate is the set S itself. Then,
forallz € S,
(OS)(z) ifand only if e¢(x) =L or ¢(xz) € A x S.

Since the codomain of cis {L} U (A x S), this means that OS = S, and so S is an invariant.
Now suppose that P; and P, and invariant, i.e. P, C OP; and P, C OP,. Then, for all z € S,

(x

(x

if and only if (c(
(

(O(P1 N Py))(xz) if and only if
if and only if

Lore(z)e Ax (PN P)

c(zr) =
clx)y=_Lorc(x)e (Ax P)N(Ax P)
=_lorc(z) e Ax Py) and (c(z) = Lorc(z) € Ax P))

x)
if and only if (OP;)(x) and (OP%)(x).

Hence PN P, C (OP)) N (OP;) =0O(P; N P,), and so P N Py is also invariant.

Finally, suppose that P is invariant, i.e. P C OP. We aim to show that OP C OOP. Suppose x € S
is such that (OP)(x) holds. Then either ¢(x) = L or ¢(x) € A x P C A x OP. Therefore (OOP)(x)
holds. O
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Exercise 1.3.3

1. Show that O is an interior operator, i.e. satisfies: AP C P, P COOP, and PC Q = OP C
0Q.

2. Prove that a predicate P is invariant if and only if P = OP.

Solution. Fix a sequence coalgebra c: S — {1} U (A x S). Recall that the henceforth operator OJ is
defined on predicates P C S as follows: for all x € S,

(OP)(z) if and only if there exists an invariant Q C S with z € Q C P.

In other words, [JP is the union of all invariants contained in P.

1. If z € OP, then there is an invariant @ C S with x € Q@ C P. So z € P too. Also, @) is an
invariant with x € Q C P. So x € OOP as well. Thus P C P and OP C OOP.

Now suppose P C @ C S. Then, for any x € [P, there is an invariant R C S with x € R C
P C Q. So z € UQ as well. Therefore P C Q.

2. For the forward direction, suppose that P is invariant. By definition, JP is the union of all
invariants contained within P. As P is assumed to be an invariant, we must have OOJP = P.

For the converse direction, suppose that (JP = P. We need to show that P is an invariant, i.e.
P COP. For any x € P = P, there exists an invariant Q C S with z € Q C P. As @ is an
invariant, either ¢(x) = L or ¢(z) € A x Q C A x P. Hence we also have z € OP. Therefore
P C OP, meaning P is an invariant. U

Exercise 1.3.4
Recall the finite behaviour predicate O((—) s ) from Example 1.3.4.1 and show that it is an invariant:
O((=) #) CO0((—) 4 ). Hint: For an invariant Q, consider the predicate Q' = (—(—) # ) N (0Q).

Solution. Fix a sequence coalgebra c: S — { L}U(A x S). Recall that, for a predicate P C S and x € S,
(OP)(x) if and only if for all invariants @ C S, we have =Q(z) or Q Z —P.

That is, OP = -[-P.

Suppose x € S is such that <>(:c s ) holds. We need to show that O (x -+ ) holds, i.e. if z % o/
for some (a, ') € A x S, then ¢ (2’ /) also holds. Fix any invariant Q@ C S with Q C =((—) 4 ). We
need to show that —Q(z’).

Following the hint, we consider the predicate

Q ==((=) #) N Q).

Observe that @’ is an invariant: if y € S satisfies @Q’(y), then there is some (b,y’) € A x S such that
Yy LA y' and Q(y’) hold. Then, since @ C —((—) /4 ) and Q is an invariant, we conclude that Q'(y’) also
holds. So Q' C OQ'.

Hence if Q(2) holds, then Q’'(x) holds too, contradicting the assumption that <>(:L' v ) O

Exercise 1.3.5
Let (A, <) be a complete lattice, i.e. a poset in which each subset U C A has a join \| U € A. It is well
known that each subset U C A then also has a meet NU € A, given by N\U =\/{ac A|VbeUa<b}.
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Let f: A — A be a monotone function: a < b implies f(a) < f(b). Recall, e.g. from Davey and
Priestley (1990, Chapter 4) that such a monotone f has both a least fived point uf € A and a greatest
fized point vf € A given by the formulas:

pf=NoaeAlfla)<a}, vi=\[{acAla<f(a)}
Now let ¢: S — {L} U (A x A) be an arbitrary sequence coalgebra, with associated nexttime operator O.

1. Prove that O is a monotone function P(S) — P(S), i.e. that P C @Q implies OP C OQ, for all
P,QCS.

2. Check that OP € P(S) is the greatest fixed point of the function P(S) — P(S) given by U
PNoU.

3. Define for P,Q C S a new predicate P U Q@ C S, for ‘P until Q’ as the least fized point of
Uw— QU (PN-0-U). Check that ‘until’ is indeed a good name for P U @, since it can be
described explicitly as

PUQ={zeS |IneN3xg,z,...,2, €8S.
zo=x A (Vi <nIaxz; > zi1)AQ(xy)
AYi < n.P(x;) }.

Hint: Don’t use the fixed point definition p, but first show that this subset is a fized point, and
then that it is contained in an arbitrary fized point.

(The fixed point definitions that we described above are standard in temporal logic; see e.g. Emerson
(1990, 3.24-3.25). The above operation U is what is called the ‘strong’ until. The ‘weak one’ does not
have the negations — in its fized-point description in point 3.)

Solution.

1. For subsets P,Q € P(S) with P C @, and for « € S such that (OP)(z) holds, we have
clx)=_Lorec(x)e Ax P.
From the assumption that P C @, it follows that
c(x) =L ore(x) e AxQ,
or equivalently, (OQ)(x).

2. Fix P € P(S) and define fp: P(S) — P(S) by fp(U) = PNOU for all U € P(S). Then the
greatest fixed point of fp is

vifp)= |J U= |J U=0OP
UeP(S), UeP(S),
UCfp(U)  UCPNOU

3. Fix P,@Q € P(S), and define fpg: P(S) — P(S) by

fra(U) = QU (PN -0-U)

16



for all U € P(S). Recall, from Exercise 1.3.1, that
“O-U={x€f : c¢(x) e AxU}.
We wish to show that the set
Upg =QU {:r € S : there exist n € Z~g, xg,...,T, € S and ag,...,a,_1 € A

Ap—
such that z = xg 20, o222 2 and

P(xg),...,P(xn_1), and Q(x,) all hold}

is the least fixed point of fpgq.
First, observe that

fro(Upq) = QU (PN =0-Upq)
=QU(PN{zeS : c(r)e AxUpg})
=QU{zeS : P(z)and c¢(x) € AxUpg }
=Upq;

so that Up is indeed a fixed point of fpq.
Now we show that Up is the least fixed point of fpg. Fix some B C S with fpq(B) = B, i.e.

QU{zeS : P(x)and c(z) e Ax B} =B.

Then we get Upgp C B by induction on the length of finite sequences wg,...x, € S and
ao, . .., an_1 € A satisfying zg — - - - Gty Tp, and P(xg) A+ A P(zp—1) A Q(zp). O

1.4 Abstractness of Coalgebraic Notions

Exercise 1.4.1
Let (M,+,0) be a monoid, considered as a category. Check that a functor F: M — Sets can be
identified with a monoid action: a set X together with a function p: X x M — X with u(x,0) = x

and p(x, my +mz) = p(p(x, mz), my).

Solution. Suppose we are given functor F': M — X. This F sends the unique object x € Obj(M) to a
set F'(x) € Obj(Sets), and sends each m € Arr(M) to a function F'm: F(x) — F(%). The functoriality
of F' requires that F'(0) = idp(,) and F(my +mz) = F(m1) o F(mz) for all my,mg € Arr(M). We then
define a function pp: F(*) X Arr(M) — F(x) by pup(z,m) := F(m)(z) for all (x,m) € F(x) x M.

The equality pp(x,0) = x for all x € F(x) follows the equality F'(0) = idp(,), while the equality
pr(x,mp + mso) = pp(pr(z,ma),my) for all x € X and my, mg € Arr(M) follows from the equality
F(m1 4+ ma) = F(my) o F(ma).

Now suppose we are given also given a set X and a function p: X x Arr(M) — X with u(z,0) ==z
and p(x, mp +ma) = p(pu(x,ma),my) for all x € X and m, my,ma € Arr(M). We then define a functor
F,: M — Sets by F,(x) = X, for the unique object x € Obj(M), and F,(m) = pu(—,m) for each
m € Arr(M). That F), is actually a functor follows from the assumptions on u.

We then have F),, = F and pp, = p. O

Exercise 1.4.2
Check in detail that the opposite C°P and the product C x D are indeed categories.
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Solution. Let C and D be categories.
We defined Obj(C°P) := Obj(C). For X,Y € Obj(C), write homc(X,Y") for the set of all morphisms
with domain X and codomain Y. We then defined homcop (X,Y") := hom¢(Y, X), and we defined a

compositition X <i Y < Z in C° to be the composition X L Y % Zin C. The associativity and

identity laws for composition in C°P follow from those for C.
We defined Obj(C x D) := Obj(C) x Obj(D). For X, X" € Obj(C) and Y,Y’ € Obj(D), we let
homeywp((X,Y), (X', Y")) :== hom¢ (X, X’) x homp(Y,Y”). A composition (X,Y) 9, (X", Y") e,

(X", Y") in C x D is defined to be the composition (X,Y) GEITON (X",Y"). For an object (X,Y)

in C x D, the identity morphism idx y is the pair (idx,idy). The associativity and identity laws for
composition in C x D follow from those for C and D. ([

Exercise 1.4.3
Assume an arbitrary category C with an object I € C. We form a new category C/I, the so-called slice
category over I, with

objects maps f: X — I with codomain I in C

morphisms from X ST toY 51 are morphisms h: X —'Y in C for which the following

diagram commutes:
X —"r Ly
N
1
1. Describe identities and composition in C/I, and verify that C/I is a category.

2. Check that taking domains yields a functor dom: C/I — C.

3. Verify that for C = Sets, a map f: X — I may be identified with an I-indexed family of sets
(X:)icr, namely where X; = f~(i). What do morphisms in C/I correspond to, in terms of such
indexed families?

Solution.

1. The identities and composition in C/I are simply the identities and composition in C. So the fact
that C/I is a category follows from C being a category.

2. We define dom: C/I — C as follows: for a morphism h from X S Ttoy L Iin C/I, we simply
define dom(h) := h. This immediately makes dom a functor from C/I to C.

3. The claimed identification is obvious. Now fix a morphism h from X LItoy % Iin Sets/I,

so that the diagram
X —hr Sy
N o
1

in Sets commutes. This requires that g(h(z)) = f(z) for all z € X. Identifying X; := f~!(i) and
Y; == g~ 1(i) for all i € I, we can identify h with a family of functions (h;);c; such that h;(z) € Y;
for all z € X;, for all 1 € I.

U
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Exercise 1.4.4
Recall that for an arbitrary set A we write A* for the set of finite sequencees {(ag,...,a,) of elements
a; € A.
1. Check that A* carries a monoid structure given by concatenation of sequences, with the empty
sequence () as a neutral element.

2. Check that the assignment A — A* yields a functor Sets — Mon by mapping a function f: A —
B between sets to the function f*: A* — B* given by {(ao,...,an) — (f(ag),..., f(ay)). (Be
aware of what needs to be checked: f* must be a monoid homomorphism, and (—)* must preserve
composition of functions and identity functions.)

3. Prove that A* is the free monoid on A: there is the singleton-sequence insertion map n: A — A*
which is universal among all mappings of A into a monoid. The latter means that for each monoid
(M,0,4) and function f: A — M there is a unique monoid homomorphism g: A* — M with

gon=f.
Solution.

1. Concatenation is associative because all the sequences under consideration are finite.

2. That (—)* preserves composition and identity functions is obvious, so we just check that for a
function f: A — B, the map f*: A* — Bx is a monoid homomorphism. Fix finite sequences
(ag,...,an),(ag,...,a;) € A*. Then

f(ao, .- an) - {ag, ..., a})) =

<a0 an7a67" a’;{:>)

= (f(ao) --->fan f(ag), .-, f(ar))
( (a0), - -, flan)) - (f(ag), .., f(ap))
(

ag, - -, an)) - (ag, - .. ay))

and f(()) = (). So f* is a monoid homomorphism.

I
f
f

I

3. Define n: A — A* by n(a) = (a) for all a € A. Fix a monoid (M, 0, +) and a function f: A — M.
Define g: A* - M by
9(()) =0
9({ao, .-, an)) = flao) +---+ flan)

for all (ag, ..., a,) € A*. This g is clearly a mononid homomorphism, using the associativity of +
in M. Observe that the diagram

A— T s oax
g

f
M

in Sets commutes: we have f(a) = g(n(a)) for all a € A. Now suppose that there is another
monoid homomorphism h: A* — M such that the diagram

A— T s oax
f h
M
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in Sets commutes. As h: A* — M is a monoid homomorphism and f = hn, we require that

h({)) = 0 and
h({ao, .-, an)) = h({ao) - - .- (an))
= h({ao)) + - -+ h((an))
= h(n(ao)) + - -~ + h(n(an))
= flao) +---+ flan)
= g(<a0, s ,an)),
for all (ag,...,an) € A*. Therefore h = g. O

Exercise 1.4.5
Recall from (1.83) the statements with exceptions of the form S — {1} USU (S x E).

1. Prove that the assignment X — {L} U X U (X X E) is functorial, so that the statements are a
coalgebra for this functor.

2. Show that all the operations aty,...,at,, methy,..., meth,, of a class as in (1.10) can also be
described as a single coalgebra, namely of the functor:

Xr—>D1x---anx({J_}UXU(XxE))><-~-><({J_}UXU(X><E)Z.

Solution.

1. Let F': Sets — Sets denote this assignment F(X) := {L} U X U (X x E) where all unions
are disjoint unions. We define F' on morphisms as follows: for functions f: X — Y, we define
F(f): F(X)— F(Y) to be the function

1, ifo=1,
F(f)(x) = ¢ f(2), if x € X,
(f(2'),e), if z=(2',¢e) for some (z/,¢) € X X E.

Then F(idx) = idp(y) and F(gf) = F(g)F(f) for all sets X and functions X & v % 7.

2. The functor’s definition on morphisms is similar in style with the previous part. O

Exercise 1.4.6

Recall the nexttime operator O for a sequence coalgebra c: S — Seq(S) = {L} U (A x S) from the
previous section. Ezercise 1.3.5.1 says that it forms a monotone function P(S) — P(S) — with respect
to the inclusion order — and thus a functor. Check that invariants are precisely O-coalgebras!

Solution. The O-coalgebras are simply a subsets U C S such that U C OU. These are precisely what
invariants are. U
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2 Coalgebras of Polynomial Functors

2.1 Constructions on Sets

Exercise 2.1.1
Verify in detail the bijective correspondences (2.2), (2.6), (2.11) and (2.16).

Solution. #77

Exercise 2.1.2

#2?
Solution. #77

Exercise 2.1.3

#2?
Solution. #77

Exercise 2.1.4

#2?
Solution. #77

Exercise 2.1.5

#2?
Solution. #77

Exercise 2.1.6

#2?
Solution. #77

Exercise 2.1.7

#2?
Solution. #77

Exercise 2.1.8

#2?
Solution. #77

Exercise 2.1.9

#2?
Solution. #77

Exercise 2.1.10
H#2?

Solution. #77
Exercise 2.1.11
#H2?
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Solution. #77

Exercise 2.1.12
344

Solution. #77

Exercise 2.1.13
H#2?

Solution. #77

Exercise 2.1.14
H#2?

Solution. #77

2.2 Polynomial Functors and Their Coalgebras

Exercise 2.2.1

#2?
Solution. #77

Exercise 2.2.2

#2?
Solution. #77

Exercise 2.2.3

#2?
Solution. #77

Exercise 2.2.4

#27
Solution. #77

Exercise 2.2.5

#29
Solution. #77

Exercise 2.2.6

#27
Solution. #77

Exercise 2.2.7

H#2?
Solution. #77
Exercise 2.2.8

427
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Solution. #77

Exercise 2.2.9

#27
Solution. #77

Exercise 2.2.10
H#2?

Solution. #77

Exercise 2.2.11
H#2?

Solution. #77

Exercise 2.2.12
H#2?

Solution. #77

2.3 Final Coalgebras

Exercise 2.3.1

#2?
Solution. #77

Exercise 2.3.2

#2?
Solution. #77

Exercise 2.3.3

#27
Solution. #77

Exercise 2.3.4

#29
Solution. #77

Exercise 2.3.5

#27
Solution. #77

Exercise 2.3.6

H#2?
Solution. #77
Exercise 2.3.7

427
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Solution. #77

Exercise 2.3.8
#2?
Solution. #77

2.4 Algebras

Exercise 2.4.1
#H2?

Solution. #77
Exercise 2.4.2
344

Solution. #77
Exercise 2.4.3
#H2?

Solution. #77
Exercise 2.4.4
H#2?

Solution. #77
Exercise 2.4.5
H#e?

Solution. #77
Exercise 2.4.6
H#H2?

Solution. 77
Exercise 2.4.7
H#2?

Solution. #77
Exercise 2.4.8
#27

Solution. #77
Exercise 2.4.9
#2?

Solution. #77
Exercise 2.4.10
#2?

Solution. #77
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2.5 Adjunctions, Cofree Coalgebras, Behaviour-Realisation

Exercise 2.5.1

#2?

Solution. #77 O
Exercise 2.5.2

H#H2?

Solution. #77 O
Exercise 2.5.3

H#H2?

Solution. #77 O

Exercise 2.5.4
This exercise describes ‘strength’ for endofunctors on Sets. In general, this is a useful notion in the
theory of datatypes (Cockett and Spencer, 1992), (Cockett and Spencer, 1995) and of computations
(Moggi, 1991); see Section 5.2 for a systemic description.

Let F': Sets — Sets be an arbitrary functor. Consider for sets X,Y the strength map

stxy

F(X)xY

F(X xY)

(u,y) ———— F(\x € X.(z,y))(u)

1. Prove that this yields a natural transformation F(—)x (—) = F((=)x(=)), where both the domain
and codomain are functors Sets x Sets — Sets.

2. Describe this strength map for the list functor (—)* and for the powerset functor P.

Solution. #77 O
Exercise 2.5.5

#2?

Solution. #77 O
Exercise 2.5.6

#H2?

Solution. #77 O
Exercise 2.5.7

H#H2?

Solution. #77 O
Exercise 2.5.8

H#2?

Solution. #77 O
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Exercise 2.5.9

#2?
Solution. #77

Exercise 2.5.10
H#2?

Solution. #77

Exercise 2.5.11
H#2?

Solution. #77

Exercise 2.5.12
#2?

Solution. #77

Exercise 2.5.13
#2?

Solution. #77

Exercise 2.5.14
#2?

Solution. #77

Exercise 2.5.15
H#2?

Solution. #77

Exercise 2.5.16
H#H2?

Solution. #77

Exercise 2.5.17
H#2?

Solution. #77
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3 Bisimulations

3.1 Relation Lifting, Bisimulations and Congruences

Exercise 3.1.1

#2?
Solution. #77

Exercise 3.1.2

#2?
Solution. 77

Exercise 3.1.3

#2?
Solution. #77

Exercise 3.1.4

#2?
Solution. #77

Exercise 3.1.5

#2?
Solution. 77

Exercise 3.1.6

422

Solution. #77

3.2 Properties of Bisimulations

Exercise 3.2.1

#2?
Solution. 77

Exercise 3.2.2

#?
Solution. #77

Exercise 3.2.3

#2?
Solution. #77

Exercise 3.2.4
#H2?

Solution. 77
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Exercise 3.2.5

#27
Solution. #77

Exercise 3.2.6
H#2?

Solution. #77

Exercise 3.2.7
H#2?

Solution. #77

3.3 Bisimulations as Spans and Cospans

Exercise 3.3.1

#2?
Solution. #77

Exercise 3.3.2

#2?
Solution. #77

Exercise 3.3.3

#2?
Solution. #77

Exercise 3.3.4

#2?
Solution. #77

3.4 Bisimulations and the Coinduction Proof Principle

Exercise 3.4.1

#27
Solution. #77

Exercise 3.4.2

344
Solution. #77

Exercise 3.4.3

#27
Solution. #77
Exercise 3.4.4

407
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Solution. #77

Exercise 3.4.5
H#2?

Solution. #77

Exercise 3.4.6
H#2?

Solution. #77

Exercise 3.4.7
#2?

Solution. #77

3.5 Process Semantics

Exercise 3.5.1

#2?
Solution. #77

Exercise 3.5.2

#2?
Solution. #77

Exercise 3.5.3

#2?
Solution. #77

Exercise 3.5.4

#2?
Solution. #77
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