
Solutions to exercises in Bart Jacobs’s book “Introduction to
Coalgebra: Towards Mathematics of States and Observation”

Ryan Tay

some date very far into the future, if ever

a work in progress... draft version 17 September 2025
These are my solutions to all the labelled exercises in Jacobs (2017). This document does not stand

on its own; it is meant to supplement the book.

Contents

1 Motivation 2
1.1 Naturalness of Coalgebraic Representations . 2
1.2 The Power of Coinduction . 4
1.3 Generality of Temporal Logic of Coalgebras . 14
1.4 Abstractness of Coalgebraic Notions . 17

2 Coalgebras of Polynomial Functors 21
2.1 Constructions on Sets . 21
2.2 Polynomial Functors and Their Coalgebras . 22
2.3 Final Coalgebras . 23
2.4 Algebras . 24
2.5 Adjunctions, Cofree Coalgebras, Behaviour-Realisation 25

3 Bisimulations 27
3.1 Relation Lifting, Bisimulations and Congruences . 27
3.2 Properties of Bisimulations . 27
3.3 Bisimulations as Spans and Cospans . 28
3.4 Bisimulations and the Coinduction Proof Principle . 28
3.5 Process Semantics . 29

Bibliography and References 30

1

1 Motivation

1.1 Naturalness of Coalgebraic Representations

Exercise 1.1.1

1. Prove that the composition operation ; as defined for coalgebras S → {⊥} ∪ S is associative, i.e.
satisfies s1 ; (s2 ; s3) = (s1 ; s2) ; s3, for all statements s1, s2, s3 : S → {⊥} ∪ S.

Define a statement skip : S → {⊥} ∪ S which is a unit for composition ; i.e. which satisfies
(skip ; s) = s = (s ; skip), for all s : S → {⊥} ∪ S.

2. Do the same for ; defined on coalgebras S → {⊥} ∪ S ∪ (S × E).
(In both cases, statements with an associative composition operation and a unit element form a

monoid.)

Solution.

1. Recall that the composition operation ; was defined as follows:

s ; t := λx ∈ S.

󰀫
⊥, if s(x) = ⊥,

t(x′) if s(x) = x′ ∈ S,

for coalgebras s, t : S → {⊥} ∪ S. Fix any three coalgebras s1, s2, s3 : S → {⊥} ∪ S. Then

s1 ; (s2 ; s3) = λx ∈ S.

󰀫
⊥, if s1(x) = ⊥,

(s2 ; s3)(x
′), if s1(x) = x′ ∈ S,

= λx ∈ S.

󰀫
⊥, if either s1(x) = ⊥, or both s1(x) = x′ ∈ S and s2(x

′) = ⊥,

s3(x
′′), if s1(x) = x′ ∈ S and s2(x

′) = x′′ ∈ S,

= λx ∈ S.

󰀫
⊥, if (s1 ; s2)(x) = ⊥,

s3(x
′′), if (s1 ; s2)(x) = x′′ ∈ S,

= (s1 ; s2) ; s3.

So the composition operation ; is associative.

The coalgebra skip : S → {⊥}∪S defined by skip(x) := x, for all x ∈ S, satisfies (skip ; s) = s =
(s ; skip) for all coalgebras s : S → {⊥} ∪ S.

2. Now we consider the composition operation ; defined as follows:

s ; t := λx ∈ S.

󰀻
󰁁󰀿

󰁁󰀽

⊥, if s(x) = ⊥,

t(x′), if s(x) = x′ ∈ S,

(x′, e), if s(x) = (x′, e) ∈ S × E,

for coalgebras s, t : S → {⊥}∪S ∪ (S×E). Fix any three coalgebras s1, s2, s3 : {⊥}∪S ∪ (S×E).
Then

s1 ; (s2 ; s3) = λx ∈ S.

󰀻
󰁁󰀿

󰁁󰀽

⊥, if s1(x) = ⊥,

(s2 ; s3)(x
′), if s1(x) = x′ ∈ S,

(x′, e), if s1(x) = (x′, e) ∈ S × E,

2

= λx ∈ S.

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

⊥, if either s1(x) = ⊥, or both s1(x) = x′ ∈ S and s2(x
′) = ⊥,

s3(x
′′), if s1(x) = x′ ∈ S and s2(x

′) = x′′ ∈ S,

(x′′, e), if s1(x) = x′ ∈ S and s2(x
′) = (x′′, e) ∈ S × E,

(x′, e), if s1(x) = (x′, e) ∈ S × E,

= λx ∈ S.

󰀻
󰁁󰀿

󰁁󰀽

⊥, if (s1 ; s2)(x) = ⊥,

s3(x
′′), if (s1 ; s2)(x) = x′′ ∈ S,

(x′′, e), if (s1; s2)(x) = (x′′, e) ∈ S × E,

= (s1 ; s2) ; s3.

So this composition operation ; is also associative.

Now define the coalgebra skip : S → {⊥} ∪ S ∪ (S ×E) by skip(x) := x, for all x ∈ S. Then we
have (skip ; s) = s = (s ; skip) for all coalgebras s : S → {⊥} ∪ S ∪ (S × E).

Exercise 1.1.2
Define also a composition monoid (skip, ;) for coalgebras S → P(S).

Solution. For coalgebras s, t : S → P(S), define

s ; t := λx ∈ S.

󰀳

󰁃
󰁞

y∈s(x)
t(y)

󰀴

󰁄 .

Then, for coalgebras s1, s2, s3 : S → P(S), we have

s1 ; (s2 ; s3) = λx ∈ S.

󰀳

󰁃
󰁞

y∈s1(x)
(s2 ; s3)(y)

󰀴

󰁄

= λx ∈ S.

󰀳

󰁃
󰁞

y∈s1(x)

󰁞

z∈s2(y)
s3(z)

󰀴

󰁄

= λx ∈ S.

󰀳

󰁃
󰁞

z∈(s1 ; s2)(x)
s3(z)

󰀴

󰁄

= (s1 ; s2) ; s3.

Furthermore, defining skip : S → P(S) by skip(x) := {x} for all x ∈ S, we have

(skip ; s) = λx ∈ S.

󰀳

󰁃
󰁞

y∈skip(x)
s(y)

󰀴

󰁄

= λx ∈ S.

󰀳

󰁃
󰁞

y∈{x}
s(y)

󰀴

󰁄

= λx ∈ S.s(x)

= s

3

and

(s ; skip) = λx ∈ S.

󰀳

󰁃
󰁞

y∈s(x)
skip(y)

󰀴

󰁄

= λx ∈ S.

󰀳

󰁃
󰁞

y∈s(x)
{y}

󰀴

󰁄

= λx ∈ S.s(x)

= s.

1.2 The Power of Coinduction

Exercise 1.2.1
Compute the nextdec-behaviour of 1

7 ∈ [0, 1) as in Example 1.2.2.

Solution. We first recall all of the following functions.

1. The final coalgebra next : {0, . . . , 9}∞ → {⊥} ∪
󰀃
{0, . . . , 9}× {0, . . . , 9}∞

󰀄
is defined by

next(σ) :=

󰀫
⊥, if σ is the empty sequence,
(d,σ′), if σ has head d ∈ {0, . . . , 9} and tail σ′ ∈ {0, . . . , 9}∞, i.e. σ = d · σ′,

for all (finite or infinite) sequences σ ∈ {0, . . . , 9}∞.

2. The coalgebra nextdec : [0, 1) → {⊥} ∪
󰀃
{0, . . . , 9}× [0, 1)

󰀄
is defined by

nextdec(r) :=

󰀫
⊥, if r = 0,

(d, 10r − d), if d ≤ 10r < d+ 1 and d ∈ {0, . . . , 9},

for all r ∈ [0, 1).

3. The function behnextdec : [0, 1) → {0, . . . , 9}∞ is the unique function making

{⊥} ∪
󰀃
{0, . . . , 9}× [0, 1)

󰀄
{⊥} ∪

󰀃
{0, . . . , 9}× {0, . . . , 9}∞

󰀄

[0, 1) {0, . . . , 9}∞

id{⊥} ∪ (id{0,...,9}×behnextdec)

nextdec

∃!behnextdec

∼= next

commute.

We wish to compute behnextdec
󰀃
1
7

󰀄
. We see that

behnextdec

󰀕
1

7

󰀖
= next−1

󰀣󰀓
id{⊥} ∪ (id{0,...,9} × behnextdec)

󰀔󰀣
nextdec

󰀕
1

7

󰀖󰀤󰀤

= next−1

󰀣󰀓
id{⊥} ∪ (id{0,...,9} × behnextdec)

󰀔󰀕󰀕
1,

3

7

󰀖󰀖󰀤

4

= next−1

󰀣󰀣
1, behnextdec

󰀕
3

7

󰀖󰀤󰀤

= 1 · behnextdec
󰀕
3

7

󰀖
.

Continuing in this fashion,

behnextdec

󰀕
1

7

󰀖
= 1 · behnextdec

󰀕
3

7

󰀖

= 1 ·
󰀕
4 · behnextdec

󰀕
2

7

󰀖󰀖

= 1 ·
󰀕
4 ·

󰀕
2 · behnextdec

󰀕
6

7

󰀖󰀖󰀖

= 1 ·
󰀕
4 ·

󰀕
2 ·

󰀕
8 · behnextdec

󰀕
4

7

󰀖󰀖󰀖󰀖

= 1 ·
󰀕
4 ·

󰀕
2 ·

󰀕
8 ·

󰀕
5 · behnextdec

󰀕
5

7

󰀖󰀖󰀖󰀖󰀖

= 1 ·
󰀕
4 ·

󰀕
2 ·

󰀕
8 ·

󰀕
5 ·

󰀕
7 · behnextdec

󰀕
1

7

󰀖󰀖󰀖󰀖󰀖󰀖
.

Therefore behnextdec
󰀃
1
7

󰀄
= 〈1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, . . . 〉.

Exercise 1.2.2
Formulate appropriate rules for the function odds : A∞ → A∞ in analogy with the rules (1.7) for evens.

Solution. We recall that, for a sequence σ := 〈a0, a1, a2, a3, . . . 〉 ∈ A∞, the function odds satisfies
odds(σ) = 〈a1, a3, a5, . . . 〉, and analogously if σ is a finite sequence. The rules we want odds to satisfy
are:

σ ∕→
odds(σ) ∕→

i.e. odds should send the empty sequence to the empty sequence;

σ
a−→ σ′ σ′ ∕→
odds(σ) ∕→

i.e. odds should send a singleton sequence 〈a〉 to the empty sequence; and

σ
a−→ σ′ σ′ a′−→ σ′′

odds(σ)
a′−→ odds(σ′)

i.e. if σ = a · a′ · σ′ ∈ A∞, where a, a′ ∈ A, then odds(σ) = a′ · odds(σ′).

Exercise 1.2.3
Use coinduction to define the empty sequence 〈〉 ∈ A∞ as a map {⊥} → A∞.

Fix an element a ∈ A, and similarly define the infinite sequence −→a : {⊥} → A∞ consisting of only
as.

5

Solution. We recall that the final coalgebra next : A∞ → {⊥} ∪
󰀃
A×A∞󰀄

is defined by

next(σ) :=

󰀫
⊥, if σ is the empty sequence,
(a,σ′), if σ has head a ∈ A and tail σ′ ∈ A∞, i.e. σ = a · σ′,

for all (finite or infinite) sequences σ ∈ A∞.
For the coalgebra ι1 : {⊥} → {⊥}∪(A×{⊥}) defined by ι1(⊥) := ⊥, the unique function behι1 : {⊥} →

A∞ making

{⊥} ∪ (A× {⊥}) {⊥} ∪ (A×A∞)

{⊥} A∞

id{⊥} ∪ (idA×behι1)

ι1

∃!behι1

∼= next

commute satisfies behι1(⊥) = 〈〉.
For the coalgebra ca : {⊥} → {⊥} ∪ (A × {⊥}) defined by ca(⊥) := (a,⊥), the unique function

behca : {⊥} → A∞ making

{⊥} ∪ (A× {⊥}) {⊥} ∪ (A×A∞)

{⊥} A∞

id{⊥} ∪ (idA×behca)

ca

∃!behca

∼= next

commute satisfies behca(⊥) = −→a = 〈a, a, a, . . . 〉.

Exercise 1.2.4
Compute the outcome of merge(〈a0, a1, a2〉, 〈b0, b1, b2, b3〉).

Solution. Recall that we defined the coalgebra m : A∞ ×A∞ → {⊥} ∪ (A× (A∞ ×A∞)) by

m(σ, τ) :=

󰀻
󰁁󰀿

󰁁󰀽

⊥, if σ ∕→ and τ ∕→,

(a, (σ, τ ′)), if σ ∕→ and τ
a−→ τ ′,

(a, (τ,σ′)), if σ a−→ σ′,

for all σ, τ ∈ A∞, and that merge : A∞ ×A∞ → A∞ is the unique function making

{⊥} ∪ (A× (A∞ ×A∞)) {⊥} ∪ (A×A∞)

A∞ ×A∞ A∞

id{⊥} ∪ (idA×merge)

m

∃!merge

∼= next

commute. Then

merge(〈a0, a1, a2〉, 〈b0, b1, b2, b3〉) = next−1
󰀓󰀃

id{⊥} ∪ (idA ×merge)
󰀄󰀃
m(〈a0, a1, a2〉, 〈b0, b1, b2, b3〉)

󰀄󰀔

6

= next−1
󰀓󰀃

id{⊥} ∪ (idA ×merge)
󰀄󰀃
(a0, (〈b0, b1, b2, b3〉, 〈a1, a2〉))

󰀄󰀔

= next−1
󰀓󰀃

a0,merge(〈b0, b1, b2, b3〉, 〈a1, a2〉)
󰀄󰀔

= a0 ·merge(〈b0, b1, b2, b3〉, 〈a1, a2〉),

and so on. Eventually, we obtain merge(〈a0, a1, a2〉, 〈b0, b1, b2, b3〉) = 〈a0, b0, a1, b1, a2, b2, b3〉.

Exercise 1.2.5
Is the merge operation associative, i.e. is merge(σ,merge(τ, ρ)) the same as merge(merge(σ, τ), ρ)? Give
a proof or a counterexample. Is there a neutral element for merge?

Solution. The merge operation is not associative:

merge(〈a〉,merge(〈b〉, 〈c〉) = merge(〈a〉, 〈b, c〉)
= 〈a, b, c〉,

whereas

merge(merge(〈a〉, 〈b〉), 〈c〉) = merge(〈a, b〉, 〈c〉)
= 〈a, c, b〉,

for all a, b, c ∈ A.
The neutral element for merge is the empty sequence: for any σ ∈ A∞, we have merge(σ, 〈〉) =

merge(〈〉,σ) = σ.

Exercise 1.2.6
Show how to define an alternative merge function which alternatingly takes two elements from its argu-
ment sequences.

Solution. We will define a coalgebra m2 : A
∞ × A∞ → {⊥} ∪ (A × (A∞ × A∞)) so that the desired

merge function is the unique function merge2 : A
∞ ×A∞ → A∞ making

{⊥} ∪ (A× (A∞ ×A∞)) {⊥} ∪ (A×A∞)

A∞ ×A∞ A∞

id{⊥} ∪ (idA×merge2)

m2

∃!merge2

∼= next

commute. As a motivating example, the desired merge of two infinite streams 〈a0, a1, . . . 〉 and 〈b0, b1, . . . 〉
should be

merge2(〈a0, a1, a2, a3, . . . 〉, 〈b0, b1, b2, b3, . . . 〉) = 〈a0, a1, b0, b1, a2, a3, b2, b3, . . . 〉.

As the diagram above commutes, we would require

merge2
󰀃
m2(〈a0, a1, a2, a3, . . . 〉, 〈b0, b1, b2, b3, . . . 〉)

󰀄
=

󰀃
a0, 〈a1, b0, b1, a2, a3, b2, b3, . . . 〉

󰀄

and so m2 should be defined to satisfy

m2(〈a0, a1, a2, a3, . . . 〉, 〈b0, b1, b2, b3, . . . 〉) =
󰀃
a0, (〈a1, b0, a3, b2, . . . 〉, 〈b1, a2, b3, a4, . . .)

󰀄

Dealing with edge cases separately leads us to the following definition: we define the coalgebra
m2 : A

∞ ×A∞ → {⊥} ∪ (A× (A∞ ×A∞)) as follows.

7

1. The function m2 sends the pair (〈〉, 〈〉) to ⊥, i.e.

m2(〈〉, 〈〉) := ⊥.

2. If τ ∈ A∞ is a non-empty sequence, say τ
a−→ τ ′ for some τ ′ ∈ A∞ and a ∈ A, then

m2(〈〉, τ) :=
󰀃
a, (〈〉, τ ′)

󰀄
.

3. If σ = 〈a〉 for some a ∈ A, then
m2(〈a〉, τ) :=

󰀃
a, (〈〉, τ)

󰀄

for all τ ∈ A∞.

4. If σ ∈ A∞ has at least length 2, say σ
a−→ σ′ a′−→ σ′′ for some σ′,σ′′ ∈ A∞ and a, a′ ∈ A, then

m2(σ, τ) :=
󰀓
a,
󰀃
merge(odds(σ), evens(τ)),merge(odds(τ), evens(σ′′))

󰀄󰀔

for all τ ∈ A∞.

Now let merge2 : A
∞ ×A∞ → A∞ be the unique function which makes

{⊥} ∪ (A× (A∞ ×A∞)) {⊥} ∪ (A×A∞)

A∞ ×A∞ A∞

id{⊥} ∪ (idA×merge2)

m2

∃!merge2

∼= next

commute. Fix any σ, τ ∈ A∞. We argue by cases on (σ, τ) that this function merge2 is the desired
merge function.

1. If σ = τ = 〈〉, then merge2(〈〉, 〈〉) = 〈〉.

2. If σ = 〈〉 and τ is a non-empty sequence, say τ = a · τ ′ for some a ∈ A and τ ′ ∈ A∞, then

merge2(〈〉, τ) = a ·merge2(〈〉, τ ′).

Thus merge2(〈〉, τ) = τ .

3. If σ = 〈a〉 for some a ∈ A, then

merge2(〈a〉, τ) = a ·merge2(〈〉, τ)
= a · τ.

4. If σ = a · a′ · σ′′ for some a, a′ ∈ A and σ′′ ∈ A∞, then

merge2(σ, τ) = a ·merge2
󰀓
merge

󰀃
odds(σ), evens(τ)

󰀄
,merge

󰀃
odds(τ), evens(σ′′)

󰀄󰀔

= a ·merge2

󰀓
merge

󰀃
a′ · odds(σ′′), evens(τ)

󰀄
,merge

󰀃
odds(τ), evens(σ′′)

󰀄󰀔

= a · a′ ·merge2

󰀓
merge

󰀃
odds(merge(a′ · odds(σ′′), evens(τ))),

evens(merge(odds(τ), evens(σ′′)))
󰀄
,

8

merge
󰀃
odds(merge(odds(τ), evens(σ′′))),

odds(merge(evens(τ), odds(σ′′)))
󰀄󰀔

= a · a′ ·merge2

󰀓
merge

󰀃
evens(τ), odds(τ)

󰀄
,merge

󰀃
evens(σ′′), odds(σ′′)

󰀄󰀔

= a · a′ ·merge2(τ,σ
′′),

as desired.

Exercise 1.2.7

1. Define three functions exi : A
∞ → A∞, for i = 0, 1, 2, which extract the elements at positions

3n+ i.

2. Define merge3 : A∞×A∞×A∞ → A∞ satisfying the equation merge3(ex0(σ), ex1(σ), ex2(σ)) = σ,
for all σ ∈ A∞.

Solution.

1. Define c0, c1, c2 : A
∞ → {⊥} ∪ (A×A∞) as follows:

c0(σ) :=

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

⊥, if σ = 〈〉,
(a, 〈〉) if σ = 〈a〉 or σ = 〈a, a′〉 for some a, a′ ∈ A,

(a,σ′′′), if σ a−→ σ′ a′−→ σ′′ a′′−→ σ′′′,

c1(σ) :=

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

⊥, if σ = 〈〉 or σ = 〈a〉 for some a ∈ A,

(a′, 〈〉) if σ = 〈a, a′〉 for some a, a′ ∈ A,

(a′,σ′′′), if σ a−→ σ′ a′−→ σ′′ a′′−→ σ′′′,

c2(σ) :=

󰀫
⊥, if σ = 〈〉, or σ = 〈a〉, or σ = 〈a, a′〉 for some a, a′ ∈ A,

(a′′,σ′′′), if σ a−→ σ′ a′−→ σ′′ a′′−→ σ′′′.

Then, for i ∈ {0, 1, 2}, the function exi : A
∞ → A∞ is the unique function making

{⊥} ∪ (A×A∞) {⊥} ∪ (A×A∞)

A∞ A∞

id{⊥} ∪ (idA×exi)

ci

∃!exi

∼= next

commute.

2. Define the coalgebra m3 : A
∞ ×A∞ ×A∞ → {⊥} ∪ (A× (A∞ ×A∞ ×A∞)) by

m3(σ, τ, ρ) :=

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

⊥, if σ = τ = ρ = 〈〉,󰀃
a, (〈〉, 〈〉, ρ′)

󰀄
, if σ = τ = 〈〉 and ρ

a−→ ρ′ for some a ∈ A and ρ′ ∈ A∞,󰀃
a, (〈〉, ρ, τ ′)

󰀄
, if σ = 〈〉 and τ

a−→ τ ′ for some a ∈ A and τ ′ ∈ A∞,󰀃
a, (τ, ρ,σ′)

󰀄
, if σ a−→ σ′ for some a ∈ A and σ′ ∈ A∞.

9

Then we let merge3 : A∞ ×A∞ ×A∞ → A∞ be the unique function making

{⊥} ∪ (A× (A∞ ×A∞ ×A∞)) {⊥} ∪ (A×A∞)

A∞ ×A∞ ×A∞ A∞

id{⊥} ∪ (idA×merge3)

m3

∃!merge3

∼= next

commute.

Let us prove that merge3(ex0(σ), ex1(σ), ex2(σ)) = σ for all σ ∈ A∞, by coinduction. Consider
the function f : A∞ → A∞×A∞×A∞ defined by f(σ) :=

󰀃
ex0(σ), ex1(σ), ex2(σ)

󰀄
for all σ ∈ A∞.

We wish to show that merge3 ◦ f = idA∞ .

{⊥} ∪ (A× (A∞ ×A∞ ×A∞)) {⊥} ∪ (A×A∞)

{⊥} ∪ (A×A∞)

A∞ ×A∞ ×A∞ A∞

A∞

id{⊥} ∪ (idA×merge3)

id{⊥} ∪ (idA×f)

m3

merge3

∼= next

next ∼=

f

Let us first show that the left square commutes. It certainly commutes when we chase the empty
sequence: (m3 ◦f)(〈〉) = ⊥ =

󰀃󰀃
id{⊥}∪ (idA× f)

󰀄
◦next

󰀄
(〈〉). If σ ∈ A∞ is a non-empty sequence,

say σ
a−→ σ′ for some a ∈ A and σ′ ∈ A∞, then we have

(m3 ◦ f)(σ) = m3

󰀃
ex0(σ), ex1(σ), ex2(σ)

󰀄

=
󰀃
a, (ex1(σ), ex2(σ), ex0(σ

′))
󰀄

=
󰀃
a, (ex0(σ

′), ex1(σ
′), ex2(σ

′)))

=
󰀃󰀃
id{⊥} ∪ (idA × f)

󰀄
◦ next

󰀄
(σ),

where the second-to-last equality can also be proven by coinduction. Therefore the outer square
commutes, and so

next ◦ (merge3 ◦ f) =
󰀃󰀃
id{⊥} ∪ (idA × (merge3 ◦ f))

󰀄
◦ next.

The finality of the coalgebra next : A∞ → {⊥} ∪ (A×A∞) now yields merge3 ◦ f = idA∞ .

Exercise 1.2.8
Consider the sequential composition function comp : A∞ × A∞ → A∞ for sequences, described by the
three rules:

σ ∕→ τ ∕→
comp(σ, τ) ∕→

σ ∕→ τ
a−→ τ ′

comp(σ, τ)
a−→ comp(σ, τ ′)

σ
a−→ σ′

comp(σ, τ)
a−→ comp(σ′, τ)

.

10

1. Show by coinduction that the empty sequence 〈〉 = next−1(⊥) ∈ A∞ is a unit element for comp,
i.e. that comp(〈〉,σ) = σ = comp(σ, 〈〉).

2. Prove also by coinduction that comp is associative, and thus that sequences carry a monoid struc-
ture.

Solution.

1. Let f : A∞ → A∞ be defined by f(σ) := comp(〈〉,σ). We will show that the diagram

{⊥} ∪ (A×A∞) {⊥} ∪ (A×A∞)

A∞ A∞

id{⊥} ∪ (idA×f)

next ∼=

f

∼= next

commutes, which would yield f = idA∞ by the finality of the coalgebra next.

First, we chase the empty sequence from the bottom left. We see that

(next ◦ f)(〈〉) = next(comp(〈〉, 〈〉))
= next(〈〉)
= ⊥,

the first rule for comp, and
󰀃󰀃
id{⊥} ∪ (idA × f)

󰀄
◦ next

󰀄
(〈〉) =

󰀃
id{⊥} ∪ (idA × f)

󰀄
(⊥)

= ⊥.

Now if σ ∈ A∞ is a non-empty sequence, say σ
a−→ σ′ for some a ∈ A and σ′ ∈ A∞, we see that

(next ◦ f)(σ) = next(comp(〈〉, a · σ′))

= (a, comp(〈〉,σ′))

= (a, f(σ′)),

by the second rule for comp and the definition of f , and
󰀃󰀃
id{⊥} ∪ (idA × f)

󰀄
◦ next

󰀄
(σ) =

󰀃󰀃
id{⊥} ∪ (idA × f)

󰀄󰀃
(a,σ′)

󰀄

= (a, f(σ′)).

Thus next ◦ f =
󰀃
id{⊥} ∪ (idA × f)

󰀄
◦ next. This proves that comp(〈〉,σ) = σ for all σ ∈ A∞.

We now show the other equality, that comp(σ, 〈〉) = σ for all σ ∈ A∞, we will show that the
function g : A∞ → A∞ defined by g(σ) := comp(σ, 〈〉) for all σ ∈ A∞ also satisfies

next ◦ g =
󰀃
id{⊥} ∪ (idA × g)

󰀄
◦ next.

That (next ◦ g)(⊥) =
󰀃󰀃
id{⊥} ∪ (idA× g)

󰀄
◦ next

󰀄
(⊥) is the same as with f . Now if σ ∈ A∞ is such

that σ
a−→ σ′ for some a ∈ A and σ′ ∈ A∞, we see that

(next ◦ g)(σ) = next(comp(a · σ′, 〈〉)

11

= (a, comp(σ′, 〈〉))
= (a, g(σ′)),

by the third rule for comp and the definition of g, and
󰀃󰀃
id{⊥} ∪ (idA × g)

󰀄
◦ next

󰀄
(σ) =

󰀃󰀃
id{⊥} ∪ (idA × g)

󰀄󰀄󰀃
(a,σ′)

󰀄

=
󰀃
a, g(σ′)).

Therefore g = idA∞ , i.e. comp(σ, 〈〉) = σ for all σ ∈ A∞.

2. We will define a coalgebra c : A∞ × A∞ × A∞ → {⊥} ∪ (A × (A∞ × A∞ × A∞)) such that the
functions h, k : A∞ ×A∞ ×A∞ → A∞ given by

h(σ, τ, ρ) := comp(σ, comp(τ, ρ)) and
k(σ, τ, ρ) := comp(comp(σ, τ), ρ),

for all σ, τ, ρ ∈ A∞, are both coalgebra homomorphisms from c to next.

{⊥} ∪ (A× (A∞ ×A∞ ×A∞)) {⊥} ∪ (A×A∞)

A∞ ×A∞ ×A∞ A∞

id{⊥} ∪ (idA×h)

id{⊥} ∪ (idA×k)
c

h

k

∼= next

The finality of next would then yield h = k.

Define c : A∞ ×A∞ ×A∞ → {⊥} ∪ (A× (A∞ ×A∞ ×A∞)) by

c(σ, τ, ρ) :=

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

⊥, if σ = τ = ρ = 〈〉,󰀃
a, (〈〉, 〈〉, ρ′

󰀄
, if σ = τ = 〈〉 and ρ = a · ρ′ for some a ∈ A and ρ′ ∈ A∞,󰀃

a, (〈〉, τ ′, ρ)
󰀄
, if σ = 〈〉 and τ = a · τ ′ for some a ∈ A and τ ′ ∈ A∞,󰀃

a, (σ′, τ, ρ)
󰀄
, if σ = a · σ′ for some a ∈ A and σ′ ∈ A∞.

Using the rules for comp, it is now elementary to check that h and k make their respective diagrams
commute.

Exercise 1.2.9
Consider two sets A,B with a function f : A → B between them. Use finality to define a function
f∞ : A∞ → B∞ that applies f element-wise. Use uniqueness to show that this mapping f 󰀁→ f∞ is
‘functorial’ in the sense that (idA)∞ = idA∞ and (g ◦ f)∞ = g∞ ◦ f∞.

Solution. For a (non-empty) set B, let nextB : B∞ → {⊥}∪(B×B∞) denote the final coalgebra defined
by

next(σ) :=

󰀫
⊥, if σ is the empty sequence,
(b,σ′), if σ has head b ∈ B and tail σ′ ∈ B∞, i.e. σ = b · σ′,

12

for all σ ∈ B∞. For a function f : A → B, define a coalgebra cf : A
∞ → {⊥} ∪ (B ×A∞) by

cf (σ) :=

󰀫
⊥, if σ = 〈〉,
(f(a),σ′), if σ = a · σ′ for some a ∈ A and σ′ ∈ A∞,

for all σ ∈ A∞. Let f∞ : A∞ → B∞ be the unique function making

{⊥} ∪ (B ×A∞) {⊥} ∪ (B ×B∞)

A∞ B∞

id{⊥} ∪ (idB×f∞)

cf

∃!f∞

∼= nextB

commute. Then f(〈a0, a1, a2, a3, . . . 〉) = 〈f(a0), f(a1), f(a2), f(a3), . . . 〉 for all a0, a1, a2, a3, . . . ∈ A,
and analogously for finite sequences.

We see that cidA = nextA. So (idA)
∞ = idA∞ by finality of nextA. Furthermore, for functions

f : A → B and g : B → C, we see that

{⊥} ∪ (C ×A∞) {⊥} ∪ (C ×B∞)

A∞ B∞

id{⊥} ∪ (idC×f∞)

cg◦f

f∞

cg

commutes. Consequently, the outer square in the diagram

{⊥} ∪ (C ×A∞) {⊥} ∪ (C ×B∞) {⊥} ∪ (C × C∞)

A∞ B∞ C∞

id{⊥} ∪ (idC×f∞) id{⊥} ∪ (idC×g∞)

cg◦f

f∞

cg

g∞

nextC∼=

commutes, i.e.
nextC ◦ (g∞ ◦ f∞) =

󰀃
id{⊥} ∪ (idC × (g∞ ◦ f∞))

󰀄
◦ cg◦f .

The finality of nextC then yields (g ◦ f)∞ = g∞ ◦ f∞.

Exercise 1.2.10
Use finality to define a map st : A∞ × B → (A × B)∞ that maps a sequence σ ∈ A∞ and an element
b ∈ B to a new sequence in (A×B)∞ by adding this b at every position in σ. (This is an example of a
‘strength’ map; see Exercise 2.5.4.

Solution. Define a coalgebra c : A∞ ×B → {⊥} ∪
󰀃
(A×B)× (A∞ ×B)

󰀄
as follows:

c(σ, b) :=

󰀫
⊥, if σ = 〈〉,󰀃
(a, b), (σ′, b)

󰀄
, if σ = a · σ′ for some a ∈ A and σ′ ∈ A∞,

13

for all σ ∈ A∞ and b ∈ B. The unique function st : A∞ ×B → (A×B)∞ making

{⊥} ∪
󰀃
(A×B)× (A∞ ×B)

󰀄
{⊥} ∪

󰀃
(A×B)× (A×B)∞

󰀄

A∞ ×B (A×B)∞

id{⊥} ∪ (idA×B×st)

c

∃!st

next∼=

commute will satisfy st(〈a0, a1, a2, . . . 〉, b) = 〈(a0, b), (a1, b), (a2, b), . . . 〉 for all a0, a1, a2, a3, . . . ∈ A and
b ∈ B, and analagously for finite sequences in A∞.

1.3 Generality of Temporal Logic of Coalgebras

Exercise 1.3.1
The nexttime operator ❡ introduced in (1.9) is the so-called weak nexttime. There is an associated
strong nexttime, given by ¬ ❡¬. Note the difference between weak and strong nexttime for sequences.

Solution. Recall that, for a sequence coalgebra c : S → {⊥} ∪ (A× S) and a predicate P ⊆ S, we have

(❡P)(x) if and only if c(x) = ⊥ or c(x) ∈ A× P,

for all x ∈ S. So,
(❡¬P)(x) if and only if c(x) = ⊥ or c(x) ∈ A× (S \ P),

and thus
(¬ ❡¬P)(x) if and only if c(x) ∕= ⊥ and c(x) /∈ A× (S \ P).

Since the codomain of c is {⊥} ∪ (A× S), and since P ⊆ S, we can equivalently write this as

(¬ ❡¬P)(x) if and only if c(x) ∈ A× P.

Exercise 1.3.2
Prove that the ‘truth’ predicate that always holds is a (sequence) invariant. And if P1 and P2 are
invariants, then so is the intersection P1 ∩ P2. Finally, if P is an invariant, then so is ❡P .

Solution. Fix a sequence coalgebra c : S → {⊥}∪ (A×S). The truth predicate is the set S itself. Then,
for all x ∈ S,

(❡S)(x) if and only if c(x) = ⊥ or c(x) ∈ A× S.

Since the codomain of c is {⊥} ∪ (A× S), this means that ❡S = S, and so S is an invariant.
Now suppose that P1 and P2 and invariant, i.e. P1 ⊆ ❡P1 and P2 ⊆ ❡P2. Then, for all x ∈ S,

(❡(P1 ∩ P2))(x) if and only if c(x) = ⊥ or c(x) ∈ A× (P1 ∩ P2)

if and only if c(x) = ⊥ or c(x) ∈ (A× P1) ∩ (A× P2)

if and only if
󰀃
c(x) = ⊥ or c(x) ∈ A× P1

󰀄
and

󰀃
c(x) = ⊥ or c(x) ∈ A× P2)

󰀄

if and only if (❡P1)(x) and (❡P2)(x).

Hence P1 ∩ P2 ⊆ (❡P1) ∩ (❡P2) = ❡(P1 ∩ P2), and so P1 ∩ P2 is also invariant.
Finally, suppose that P is invariant, i.e. P ⊆ ❡P . We aim to show that ❡P ⊆ ❡❡P . Suppose x ∈ S

is such that (❡P)(x) holds. Then either c(x) = ⊥ or c(x) ∈ A × P ⊆ A × ❡P . Therefore (❡❡P)(x)
holds.

14

Exercise 1.3.3

1. Show that □ is an interior operator, i.e. satisfies: □P ⊆ P , □P ⊆ □□P , and P ⊆ Q =⇒ □P ⊆
□Q.

2. Prove that a predicate P is invariant if and only if P = □P .

Solution. Fix a sequence coalgebra c : S → {⊥} ∪ (A × S). Recall that the henceforth operator □ is
defined on predicates P ⊆ S as follows: for all x ∈ S,

(□P)(x) if and only if there exists an invariant Q ⊆ S with x ∈ Q ⊆ P .

In other words, □P is the union of all invariants contained in P .

1. If x ∈ □P , then there is an invariant Q ⊆ S with x ∈ Q ⊆ P . So x ∈ P too. Also, Q is an
invariant with x ∈ Q ⊆ □P . So x ∈ □□P as well. Thus □P ⊆ P and □P ⊆ □□P .

Now suppose P ⊆ Q ⊆ S. Then, for any x ∈ □P , there is an invariant R ⊆ S with x ∈ R ⊆
P ⊆ Q. So x ∈ □Q as well. Therefore □P ⊆ □Q.

2. For the forward direction, suppose that P is invariant. By definition, □P is the union of all
invariants contained within P . As P is assumed to be an invariant, we must have □P = P .

For the converse direction, suppose that □P = P . We need to show that P is an invariant, i.e.
P ⊆ ❡P . For any x ∈ P = □P , there exists an invariant Q ⊆ S with x ∈ Q ⊆ P . As Q is an
invariant, either c(x) = ⊥ or c(x) ∈ A × Q ⊆ A × P . Hence we also have x ∈ ❡P . Therefore
P ⊆ ❡P , meaning P is an invariant.

Exercise 1.3.4
Recall the finite behaviour predicate ♦

󰀃
(−) ∕→

󰀄
from Example 1.3.4.1 and show that it is an invariant:

♦
󰀃
(−) ∕→

󰀄
⊆ ❡♦󰀃(−) ∕→

󰀄
. Hint: For an invariant Q, consider the predicate Q′ =

󰀃
¬(−) ∕→

󰀄
∩ (❡Q).

Solution. Fix a sequence coalgebra c : S → {⊥}∪(A×S). Recall that, for a predicate P ⊆ S and x ∈ S,

(♦P)(x) if and only if for all invariants Q ⊆ S, we have ¬Q(x) or Q ∕⊆ ¬P .

That is, ♦P = ¬□¬P .
Suppose x ∈ S is such that ♦

󰀃
x ∕→

󰀄
holds. We need to show that ❡♦󰀃x ∕→

󰀄
holds, i.e. if x a−→ x′

for some (a, x′) ∈ A× S, then ♦
󰀃
x′ ∕→

󰀄
also holds. Fix any invariant Q ⊆ S with Q ⊆ ¬

󰀃
(−) ∕→

󰀄
. We

need to show that ¬Q(x′).
Following the hint, we consider the predicate

Q′ := ¬
󰀃
(−) ∕→

󰀄
∩ (❡Q).

Observe that Q′ is an invariant: if y ∈ S satisfies Q′(y), then there is some (b, y′) ∈ A × S such that
y

b−→ y′ and Q(y′) hold. Then, since Q ⊆ ¬
󰀃
(−) ∕→

󰀄
and Q is an invariant, we conclude that Q′(y′) also

holds. So Q′ ⊆ ❡Q′.
Hence if Q(x′) holds, then Q′(x) holds too, contradicting the assumption that ♦

󰀃
x ∕→

󰀄
.

Exercise 1.3.5
Let (A,≤) be a complete lattice, i.e. a poset in which each subset U ⊆ A has a join

󰁚
U ∈ A. It is well

known that each subset U ⊆ A then also has a meet
󰁙

U ∈ A, given by
󰁙

U =
󰁚
{ a ∈ A | ∀b ∈ U.a ≤ b }.

15

Let f : A → A be a monotone function: a ≤ b implies f(a) ≤ f(b). Recall, e.g. from Davey and
Priestley (1990, Chapter 4) that such a monotone f has both a least fixed point µf ∈ A and a greatest
fixed point νf ∈ A given by the formulas:

µf =
󰁡

{ a ∈ A | f(a) ≤ a }, νf =
󰁢

{ a ∈ A | a ≤ f(a) }.

Now let c : S → {⊥} ∪ (A×A) be an arbitrary sequence coalgebra, with associated nexttime operator ❡.
1. Prove that ❡ is a monotone function P(S) → P(S), i.e. that P ⊆ Q implies ❡P ⊆ ❡Q, for all

P,Q ⊆ S.

2. Check that □P ∈ P(S) is the greatest fixed point of the function P(S) → P(S) given by U 󰀁→
P ∩ ❡U .

3. Define for P,Q ⊆ S a new predicate P U Q ⊆ S, for ‘P until Q’ as the least fixed point of
U 󰀁→ Q ∪ (P ∩ ¬ ❡¬U). Check that ‘until’ is indeed a good name for P U Q, since it can be
described explicitly as

P U Q = {x ∈ S | ∃n ∈ N.∃x0, x1, . . . , xn ∈ S.

x0 = x ∧ (∀i < n.∃a.xi
a−→ xi+1) ∧Q(xn)

∧ ∀i < n.P (xi) }.

Hint: Don’t use the fixed point definition µ, but first show that this subset is a fixed point, and
then that it is contained in an arbitrary fixed point.

(The fixed point definitions that we described above are standard in temporal logic; see e.g. Emerson
(1990, 3.24–3.25). The above operation U is what is called the ‘strong’ until. The ‘weak one’ does not
have the negations ¬ in its fixed-point description in point 3.)

Solution.

1. For subsets P,Q ∈ P(S) with P ⊆ Q, and for x ∈ S such that (❡P)(x) holds, we have

c(x) = ⊥ or c(x) ∈ A× P.

From the assumption that P ⊆ Q, it follows that

c(x) = ⊥ or c(x) ∈ A×Q,

or equivalently, (❡Q)(x).

2. Fix P ∈ P(S) and define fP : P(S) → P(S) by fP (U) := P ∩ ❡U for all U ∈ P(S). Then the
greatest fixed point of fP is

ν(fP) :=
󰁞

U∈P(S),
U⊆fP (U)

U =
󰁞

U∈P(S),
U⊆P ∩ ❝U

U = □P.

3. Fix P,Q ∈ P(S), and define fP,Q : P(S) → P(S) by

fP,Q(U) := Q ∪ (P ∩ ¬ ❡¬U)

16

for all U ∈ P(S). Recall, from Exercise 1.3.1, that

¬ ❡¬U = {x ∈ S : c(x) ∈ A× U }.

We wish to show that the set

UP,Q := Q ∪
󰁱
x ∈ S : there exist n ∈ Z>0, x0, . . . , xn ∈ S and a0, . . . , an−1 ∈ A

such that x = x0
a0−→ · · · an−1−−−→ xn and

P (x0), . . . , P (xn−1), and Q(xn) all hold
󰁲

is the least fixed point of fP,Q.

First, observe that

fP,Q(UP,Q) = Q ∪ (P ∩ ¬ ❡¬UP,Q)

= Q ∪ (P ∩ {x ∈ S : c(x) ∈ A× UP,Q })
= Q ∪ {x ∈ S : P (x) and c(x) ∈ A× UP,Q }
= UP,Q,

so that UP,Q is indeed a fixed point of fP,Q.

Now we show that UP,Q is the least fixed point of fP,Q. Fix some B ⊆ S with fP,Q(B) = B, i.e.

Q ∪ {x ∈ S : P (x) and c(x) ∈ A×B } = B.

Then we get UP,Q ⊆ B by induction on the length of finite sequences x0, . . . xn ∈ S and
a0, . . . , an−1 ∈ A satisfying x0

a0−→ · · · an−1−−−→ xn, and P (x0) ∧ · · · ∧ P (xn−1) ∧Q(xn).

1.4 Abstractness of Coalgebraic Notions

Exercise 1.4.1
Let (M,+, 0) be a monoid, considered as a category. Check that a functor F : M → Sets can be
identified with a monoid action: a set X together with a function µ : X ×M → X with µ(x, 0) = x
and µ(x,m1 +m2) = µ(µ(x,m2),m1).

Solution. Suppose we are given functor F : M → X. This F sends the unique object 󰂏 ∈ Obj(M) to a
set F (󰂏) ∈ Obj(Sets), and sends each m ∈ Arr(M) to a function Fm : F (󰂏) → F (󰂏). The functoriality
of F requires that F (0) = idF (󰂏) and F (m1 +m2) = F (m1) ◦ F (m2) for all m1,m2 ∈ Arr(M). We then
define a function µF : F (󰂏)× Arr(M) → F (󰂏) by µF (x,m) := F (m)(x) for all (x,m) ∈ F (󰂏)×M .

The equality µF (x, 0) = x for all x ∈ F (󰂏) follows the equality F (0) = idF (󰂏), while the equality
µF (x,m1 + m2) = µF (µF (x,m2),m1) for all x ∈ X and m1,m2 ∈ Arr(M) follows from the equality
F (m1 +m2) = F (m1) ◦ F (m2).

Now suppose we are given also given a set X and a function µ : X × Arr(M) → X with µ(x, 0) = x
and µ(x,m1 +m2) = µ(µ(x,m2),m1) for all x ∈ X and m,m1,m2 ∈ Arr(M). We then define a functor
Fµ : M → Sets by Fµ(󰂏) := X, for the unique object 󰂏 ∈ Obj(M), and Fµ(m) := µ(−,m) for each
m ∈ Arr(M). That Fµ is actually a functor follows from the assumptions on µ.

We then have FµF = F and µFµ = µ.

Exercise 1.4.2
Check in detail that the opposite Cop and the product C× D are indeed categories.

17

Solution. Let C and D be categories.
We defined Obj(Cop) := Obj(C). For X,Y ∈ Obj(C), write homC(X,Y) for the set of all morphisms

with domain X and codomain Y . We then defined homCop(X,Y) := homC(Y,X), and we defined a
compositition X

f←− Y
g←− Z in Cop to be the composition X

f−→ Y
g−→ Z in C. The associativity and

identity laws for composition in Cop follow from those for C.
We defined Obj(C × D) := Obj(C) × Obj(D). For X,X ′ ∈ Obj(C) and Y, Y ′ ∈ Obj(D), we let

homC×D((X,Y), (X ′, Y ′)) := homC(X,X ′)× homD(Y, Y
′). A composition (X,Y)

(f,g)−−−→ (X ′, Y ′)
(f ′,g′)−−−−→

(X ′′, Y ′′) in C × D is defined to be the composition (X,Y)
(f ′f, g′g)−−−−−→ (X ′′, Y ′′). For an object (X,Y)

in C × D, the identity morphism id(X,Y) is the pair (idX , idY). The associativity and identity laws for
composition in C× D follow from those for C and D.

Exercise 1.4.3
Assume an arbitrary category C with an object I ∈ C. We form a new category C/I, the so-called slice
category over I, with

objects maps f : X → I with codomain I in C

morphisms from X
f−→ I to Y

g−→ I are morphisms h : X → Y in C for which the following
diagram commutes:

X Y

I

h

f g

1. Describe identities and composition in C/I, and verify that C/I is a category.

2. Check that taking domains yields a functor dom: C/I → C.

3. Verify that for C = Sets, a map f : X → I may be identified with an I-indexed family of sets
(Xi)i∈I , namely where Xi = f−1(i). What do morphisms in C/I correspond to, in terms of such
indexed families?

Solution.

1. The identities and composition in C/I are simply the identities and composition in C. So the fact
that C/I is a category follows from C being a category.

2. We define dom: C/I → C as follows: for a morphism h from X
f−→ I to Y

g−→ I in C/I, we simply
define dom(h) := h. This immediately makes dom a functor from C/I to C.

3. The claimed identification is obvious. Now fix a morphism h from X
f−→ I to Y

g−→ I in Sets/I,
so that the diagram

X Y

I

h

f g

in Sets commutes. This requires that g(h(x)) = f(x) for all x ∈ X. Identifying Xi := f−1(i) and
Yi := g−1(i) for all i ∈ I, we can identify h with a family of functions (hi)i∈I such that hi(x) ∈ Yi
for all x ∈ Xi, for all i ∈ I.

18

Exercise 1.4.4
Recall that for an arbitrary set A we write A󰂏 for the set of finite sequencees 〈a0, . . . , an〉 of elements
ai ∈ A.

1. Check that A󰂏 carries a monoid structure given by concatenation of sequences, with the empty
sequence 〈〉 as a neutral element.

2. Check that the assignment A 󰀁→ A󰂏 yields a functor Sets → Mon by mapping a function f : A →
B between sets to the function f󰂏 : A󰂏 → B󰂏 given by 〈a0, . . . , an〉 󰀁→ 〈f(a0), . . . , f(an)〉. (Be
aware of what needs to be checked: f󰂏 must be a monoid homomorphism, and (−)󰂏 must preserve
composition of functions and identity functions.)

3. Prove that A󰂏 is the free monoid on A: there is the singleton-sequence insertion map η : A → A󰂏

which is universal among all mappings of A into a monoid. The latter means that for each monoid
(M, 0,+) and function f : A → M there is a unique monoid homomorphism g : A󰂏 → M with
g ◦ η = f .

Solution.

1. Concatenation is associative because all the sequences under consideration are finite.

2. That (−)󰂏 preserves composition and identity functions is obvious, so we just check that for a
function f : A → B, the map f󰂏 : A󰂏 → B󰂏 is a monoid homomorphism. Fix finite sequences
〈a0, . . . , an〉, 〈a′0, . . . , a′k〉 ∈ A󰂏. Then

f(〈a0, . . . , an〉 · 〈a′0, . . . , a′k〉) = f(〈a0, . . . , an, a′0, . . . , a′k〉)
= 〈f(a0), . . . , f(an), f(a′0), . . . , f(a′k)〉
= 〈f(a0), . . . , f(an)〉 · 〈f(a′0), . . . , f(a′k)〉
= f(〈a0, . . . , an〉) · 〈a′0, . . . a′k〉)

and f(〈〉) = 〈〉. So f󰂏 is a monoid homomorphism.

3. Define η : A → A󰂏 by η(a) := 〈a〉 for all a ∈ A. Fix a monoid (M, 0,+) and a function f : A → M .
Define g : A󰂏 → M by

g(〈〉) := 0

g(〈a0, . . . , an〉) := f(a0) + · · ·+ f(an)

for all 〈a0, . . . , an〉 ∈ A󰂏. This g is clearly a mononid homomorphism, using the associativity of +
in M . Observe that the diagram

A A󰂏

M

η

f
g

in Sets commutes: we have f(a) = g(η(a)) for all a ∈ A. Now suppose that there is another
monoid homomorphism h : A󰂏 → M such that the diagram

A A󰂏

M

η

f
h

19

in Sets commutes. As h : A󰂏 → M is a monoid homomorphism and f = hη, we require that
h(〈〉) = 0 and

h(〈a0, . . . , an〉) = h(〈a0〉 · . . . · 〈an〉)
= h(〈a0〉) + · · ·+ h(〈an〉)
= h(η(a0)) + · · ·+ h(η(an))

= f(a0) + · · ·+ f(an)

= g(〈a0, . . . , an〉),

for all 〈a0, . . . , an〉 ∈ A󰂏. Therefore h = g.

Exercise 1.4.5
Recall from (1.3) the statements with exceptions of the form S → {⊥} ∪ S ∪ (S × E).

1. Prove that the assignment X 󰀁→ {⊥} ∪ X ∪ (X × E) is functorial, so that the statements are a
coalgebra for this functor.

2. Show that all the operations at1, . . . , atn,meth1, . . . ,methm of a class as in (1.10) can also be
described as a single coalgebra, namely of the functor:

X 󰀁→ D1 × · · ·×Dn × ({⊥} ∪X ∪ (X × E))× · · ·× ({⊥} ∪X ∪ (X × E))󰁿 󰁾󰁽 󰂀
m times

.

Solution.

1. Let F : Sets → Sets denote this assignment F (X) := {⊥} ∪ X ∪ (X × E) where all unions
are disjoint unions. We define F on morphisms as follows: for functions f : X → Y , we define
F (f) : F (X) → F (Y) to be the function

F (f)(x) :=

󰀻
󰁁󰀿

󰁁󰀽

⊥, if x = ⊥,

f(x), if x ∈ X,

(f(x′), e), if x = (x′, e) for some (x′, e) ∈ X × E.

Then F (idX) = idF (X) and F (gf) = F (g)F (f) for all sets X and functions X
f−→ Y

g−→ Z.

2. The functor’s definition on morphisms is similar in style with the previous part.

Exercise 1.4.6
Recall the nexttime operator ❡ for a sequence coalgebra c : S → Seq(S) = {⊥} ∪ (A × S) from the
previous section. Exercise 1.3.5.1 says that it forms a monotone function P(S) → P(S) — with respect
to the inclusion order — and thus a functor. Check that invariants are precisely ❡-coalgebras!
Solution. The ❡-coalgebras are simply a subsets U ⊆ S such that U ⊆ ❡U . These are precisely what
invariants are.

20

2 Coalgebras of Polynomial Functors

2.1 Constructions on Sets

Exercise 2.1.1
Verify in detail the bijective correspondences (2.2), (2.6), (2.11) and (2.16).

Solution. #??

Exercise 2.1.2
#??

Solution. #??

Exercise 2.1.3
#??

Solution. #??

Exercise 2.1.4
#??

Solution. #??

Exercise 2.1.5
#??

Solution. #??

Exercise 2.1.6
#??

Solution. #??

Exercise 2.1.7
#??

Solution. #??

Exercise 2.1.8
#??

Solution. #??

Exercise 2.1.9
#??

Solution. #??

Exercise 2.1.10
#??

Solution. #??

Exercise 2.1.11
#??

21

Solution. #??

Exercise 2.1.12
#??

Solution. #??

Exercise 2.1.13
#??

Solution. #??

Exercise 2.1.14
#??

Solution. #??

2.2 Polynomial Functors and Their Coalgebras

Exercise 2.2.1
#??

Solution. #??

Exercise 2.2.2
#??

Solution. #??

Exercise 2.2.3
#??

Solution. #??

Exercise 2.2.4
#??

Solution. #??

Exercise 2.2.5
#??

Solution. #??

Exercise 2.2.6
#??

Solution. #??

Exercise 2.2.7
#??

Solution. #??

Exercise 2.2.8
#??

22

Solution. #??

Exercise 2.2.9
#??

Solution. #??

Exercise 2.2.10
#??

Solution. #??

Exercise 2.2.11
#??

Solution. #??

Exercise 2.2.12
#??

Solution. #??

2.3 Final Coalgebras

Exercise 2.3.1
#??

Solution. #??

Exercise 2.3.2
#??

Solution. #??

Exercise 2.3.3
#??

Solution. #??

Exercise 2.3.4
#??

Solution. #??

Exercise 2.3.5
#??

Solution. #??

Exercise 2.3.6
#??

Solution. #??

Exercise 2.3.7
#??

23

Solution. #??

Exercise 2.3.8
#??

Solution. #??

2.4 Algebras

Exercise 2.4.1
#??

Solution. #??

Exercise 2.4.2
#??

Solution. #??

Exercise 2.4.3
#??

Solution. #??

Exercise 2.4.4
#??

Solution. #??

Exercise 2.4.5
#??

Solution. #??

Exercise 2.4.6
#??

Solution. #??

Exercise 2.4.7
#??

Solution. #??

Exercise 2.4.8
#??

Solution. #??

Exercise 2.4.9
#??

Solution. #??

Exercise 2.4.10
#??

Solution. #??

24

2.5 Adjunctions, Cofree Coalgebras, Behaviour-Realisation

Exercise 2.5.1
#??

Solution. #??

Exercise 2.5.2
#??

Solution. #??

Exercise 2.5.3
#??

Solution. #??

Exercise 2.5.4
This exercise describes ‘strength’ for endofunctors on Sets. In general, this is a useful notion in the
theory of datatypes (Cockett and Spencer, 1992), (Cockett and Spencer, 1995) and of computations
(Moggi, 1991); see Section 5.2 for a systemic description.

Let F : Sets → Sets be an arbitrary functor. Consider for sets X,Y the strength map

F (X)× Y F (X × Y)

(u, y) F (λx ∈ X.(x, y))(u)

stX,Y

1. Prove that this yields a natural transformation F (−)×(−)
st
=⇒ F ((−)×(−)), where both the domain

and codomain are functors Sets× Sets → Sets.

2. Describe this strength map for the list functor (−)󰂏 and for the powerset functor P.

Solution. #??

Exercise 2.5.5
#??

Solution. #??

Exercise 2.5.6
#??

Solution. #??

Exercise 2.5.7
#??

Solution. #??

Exercise 2.5.8
#??

Solution. #??

25

Exercise 2.5.9
#??

Solution. #??

Exercise 2.5.10
#??

Solution. #??

Exercise 2.5.11
#??

Solution. #??

Exercise 2.5.12
#??

Solution. #??

Exercise 2.5.13
#??

Solution. #??

Exercise 2.5.14
#??

Solution. #??

Exercise 2.5.15
#??

Solution. #??

Exercise 2.5.16
#??

Solution. #??

Exercise 2.5.17
#??

Solution. #??

26

3 Bisimulations

3.1 Relation Lifting, Bisimulations and Congruences

Exercise 3.1.1
#??

Solution. #??

Exercise 3.1.2
#??

Solution. #??

Exercise 3.1.3
#??

Solution. #??

Exercise 3.1.4
#??

Solution. #??

Exercise 3.1.5
#??

Solution. #??

Exercise 3.1.6
#??

Solution. #??

3.2 Properties of Bisimulations

Exercise 3.2.1
#??

Solution. #??

Exercise 3.2.2
#??

Solution. #??

Exercise 3.2.3
#??

Solution. #??

Exercise 3.2.4
#??

Solution. #??

27

Exercise 3.2.5
#??

Solution. #??

Exercise 3.2.6
#??

Solution. #??

Exercise 3.2.7
#??

Solution. #??

3.3 Bisimulations as Spans and Cospans

Exercise 3.3.1
#??

Solution. #??

Exercise 3.3.2
#??

Solution. #??

Exercise 3.3.3
#??

Solution. #??

Exercise 3.3.4
#??

Solution. #??

3.4 Bisimulations and the Coinduction Proof Principle

Exercise 3.4.1
#??

Solution. #??

Exercise 3.4.2
#??

Solution. #??

Exercise 3.4.3
#??

Solution. #??

Exercise 3.4.4
#??

28

Solution. #??

Exercise 3.4.5
#??

Solution. #??

Exercise 3.4.6
#??

Solution. #??

Exercise 3.4.7
#??

Solution. #??

3.5 Process Semantics

Exercise 3.5.1
#??

Solution. #??

Exercise 3.5.2
#??

Solution. #??

Exercise 3.5.3
#??

Solution. #??

Exercise 3.5.4
#??

Solution. #??

29

Bibliography and References

J. Robin B. Cockett and Dwight Spencer. Strong categorical datatypes I. In Robert A. G. Seely,
editor, International Meeting on Category Theory 1991, volume 13, pages 141–169. Canadian
Mathematical Society Proceedings, AMS, Montreal, 1992.

J. Robin B. Cockett and Dwight Spencer. Strong categorical datatypes II: A term logic for categorical
programming. Theoretical Computer Science, 139:69–113, 1995.
DOI: https://doi.org/10.1016/0304-3975(94)00099-5.

Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and Order. Cambridge University
Press, 1990.
DOI: https://doi.org/10.1017/CBO9780511809088.

E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume B: Formal Models and Semantics, pages 995–1072. Elsevier B.V., 1990.
DOI: https://doi.org/10.1016/B978-0-444-88074-1.50021-4.

Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation. Cambridge
University Press, 2017.
DOI: https://doi.org/10.1017/CBO9781316823187.

Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1):55–92,
1991.
DOI: https://doi.org/10.1016/0890-5401(91)90052-4.

30

https://doi.org/10.1016/0304-3975(94)00099-5
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1016/B978-0-444-88074-1.50021-4
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1016/0890-5401(91)90052-4

