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1 Prelude

Suppose we have probability measures µ and ν on a sample space X. How should one quantify
how “different” the two probability measures are? If the sample space is X = R and the
measures µ and ν admit probability density functions f and g respectively, so that µ(A) =󰁕
A f(x) dx and ν(A) =

󰁕
A g(x) dx, then a quantity which could measure the “distance” between

µ and ν is

󰀂f − g󰀂L1 :=

󰁝

R
|f(x)− g(x)| dx.

If 󰀂f −g󰀂L1 is close to 0 then we would say that the two measures are really close to each other,
and if 󰀂f − g󰀂L1 is close to 2 then we would say that the two measures are really quite different
from each other.

There are two problems with this approach. Firstly, some measures may not even admit a
probability density function. For instance, the Dirac measure δ0 on R given by

δ0(A) :=

󰀫
1 if 0 ∈ A,

0 else.

The elephant in the room, though, is that the L1 distance between f and g may not match up
with our intuitive notion of how far measures µ and ν may be from each other. Consider, for
instance, the measures µ and ν having densities

f(x) :=

󰀫
108 if 0 ≤ x ≤ 1

108
,

0 else,
and g(x) :=

󰀫
108 if 1

108
≤ x ≤ 2

108
,

0 else,

respectively. Then 󰀂f − g󰀂L1 = 2, which as large as 󰀂f − g󰀂L1 could possibly be, and so we
would say that µ and ν are “really far apart from each other”. There is, however, still a sense
in which µ and ν are really close to each other: the graph of g is just the graph of f translated
to the right by a mere 10−8 units. Furthermore, if we consider a third measure ξ with density

h(x) :=

󰀫
108 if 500 ≤ x ≤ 500 + 1

108
,

0 else,

then we would also have 󰀂f − h󰀂L1 = 2. The L1 distance is unable to capture this huge shift of
500 units to the right; it is unable to distinguish µ from ξ any more than it can distinguish µ
from ν.

Instead, we turn to a way of quantifying the distance between two probability measures µ
and ν based off of this intuitive notion of how much “effort” would it take to “move” from µ to
ν. Underpinning this whole theory is the Monge–Kantorovich problem [Gar18, Chapter 20.2]
[RR, Chapter 2.1], named after Gaspard Monge and Leonid Kantorovich (Russian: Леонид
Канторович):

The Monge–Kantorovich problem.
Fix Polish spaces X and Y , and a lower semicontinuous cost function c : X × Y →
R≥0. Given two Borel probability measures µ and ν on X and Y respectively, the
Monge–Kantorovich problem seeks to minimise1 the following total cost:

󰁝

X×Y
c dπ,

with π ranging over the space of all Borel probability measures on X × Y with
marginals µ and ν.

1A priori, we seek to find the infimum value of
󰁕
X×Y

c(x, y) dπ, rather than the minimum value. It will turn
out that the infimum value is actually always achieved (see Proposition 4.1).
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An intuitive view of the Monge–Kantorovich problem is as follows. Suppose you had a pile
of sand spread about in a space X according to a probability measure µ, and you wished to
transport that pile of sand to a space Y and spreading it out according to a probability measure
ν. Moving one particle of sand from x ∈ X to y ∈ Y costs $c(x, y). A transport plan π tells
you how you should move the pile of sand: a volume of space B ⊆ Y gets π(A×B) of the sand
available the volume of space A ⊆ X. Of course, there are restrictions for what constitutes a
transport plan: after the transportation has finished, the amount of sand in any B ⊆ Y should
equal π(X ×B). Similarly, the amount of sand leaving any A ⊆ X should equal π(A× Y ).

It is these restrictions which are captured by the requirement that π has marginals µ and
ν, that is, given the projection maps pX : X × Y → X and pY : X × Y → Y defined by

pX(x, y) := x and pY (x, y) := y,

we require that µ is the image measure of π under the map pX , and ν is the image measure of
π under the map pY .

A transport plan always exists: the product measure π := µ × ν works. The Monge–
Kantorovich problem, however, seeks to find the optimal transport plan. It is an important
result that the Monge–Kantorovich problem always has a solution, in the sense that an optimal
transport plan always exists (see Proposition 4.1). It is this fact that allows us to develop the
Wasserstein metric2, which we will define in the Allemande section. The subsequent sections of
this expository piece explores properties of the Wasserstein metric on the real line. Most of the
definitions and results, except for the results in the Courante section, can be generalised to work
on Rd or even on arbitrary Polish spaces. For simplicity, however, we will only be interested in
developing the theory on the real line.

Section 2, titled Allemande, defines the Wasserstein metric W1 on the real line, and demon-
strates it with a simple example. Section 3, titled Courante, connects the Wasserstein dis-
tance between two probability measures with their cumulative density functions. Section 4,
titled Sarabande, fills in all the proofs omitted from the previous three sections. Section 5
and Section 6, titled Bourrée and Gigue respectively, establishes lower and upper bounds on
the Wasserstein metric with other objects which also capture some idea of “distance” between
measures.

2Also known as the Kantorovich–Rubinstein metric or the Earth Mover’s distance [Vil09, Chapter 6 Biblio-
graphical Notes].
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2 Allemande

From now onwards, for a topological space X, let us use P (X) to denote the space of Borel
probability measures on X, though we will mainly be concerned with the spaces P (R) and
P (R2). For µ, ν ∈ P (R), we define the space

Πµ,ν := {π ∈ P (R2) : π has marginals µ and ν }.

We shall use the cost function c : R × R → R≥0 given by c(x, y) := |x − y| to define the
Wasserstein metric, named after Leonid Vaserstein3 (Russian: Леонид Васерштейн), on the
subspace

P1(R) :=
󰀝
µ ∈ P (R) :

󰁝

R
|x| dµ(x) < ∞

󰀞
.

Definition 2.1 (The Wasserstein metric W1 [Gar18, Chapter 21] [Vil09, Definition 6.1, Defi-
nition 6.4])
We define the function W1 : P1(R)× P1(R) → R≥0, called the Wasserstein metric4, by

W1(µ, ν) := inf

󰀝󰁝

R2

|x− y| dπ(x, y) : π ∈ Πµ,ν

󰀞
.

The Wasserstein metric W1 is indeed a metric on P1(R) (see Proposition 4.4), so it captures
the ideas of “distance” between measures as one would expect, including the triangle inequality.

Calculating W1(µ, ν) for specific probability measures µ and ν can be challenging given only
this definition. Often, if there is enough similarity between µ and ν, we can obtain an upper
bound for W1(µ, ν) by finding a suitable transport plan from µ to ν. Recall again the measures
from the Prelude section:

µ(A) := 108 · λ
󰀕
A ∩

󰀗
0,

1

108

󰀘󰀖
and ν(A) := 108 · λ

󰀕
A ∩

󰀗
1

108
,

2

108

󰀘󰀖
.

where λ is the Lebesgue measure on R. Consider the transport plan T : R → R given by
T (x) := x + 1

108
. Let G : R → R2 be defined by G(x) := (x, T (x)), and define the Borel

probability measure π on R2 to be the image measure of µ under G, that is,

π(A) := µ(G−1(A)).

Then π has marginals µ and ν, and we observe that
󰁝

R2

|x− y| dπ(x, y) = 1

108
,

yielding 0 < W1(µ, ν) ≤ 1
108

. Given that the graph of the distribution of ν is just a translation of
1

108
units to the right of the graph of the distribution of µ, would it not be nice if W1(µ, ν) =

1
108

?
Furthermore, if we recall the other Borel probability measure ξ from the Prelude section, namely

ξ(A) := 108 · λ
󰀕
A ∩

󰀗
500, 500 +

1

108

󰀘󰀖
,

3Leonid Vaserstein was actually not the first person to come up with the Wasserstein metric. The metric
is due to Leonid Kantorovich and Gennadii Rubinstein (Russian: Геннадии Рубинштейн) [Vil09, Chapter 6
Bibliographical Notes] [Vil09, Chapter 3].

4The appearance of the subscript “1” in the notations “W1” and “P1” is due to the definition of the more
general Wasserstein p-metric Wp, defined by

Wp(µ, ν) :=

󰀕
inf

󰀝󰁝

R2

|x− y|p dπ(x, y) : π ∈ Πµ,ν

󰀞󰀖1/p

,

where 1 ≤ p < ∞. This metric Wp will be defined on the space Pp(R) consisting of all µ ∈ P (R) such that󰁕
R |x|

p dµ(x) < ∞.
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a similar argument to the one above would yield 0 < W1(µ, ξ) ≤ 500. Again, it would be
wonderful if we indeed had W1(µ, ξ) = 500.

Theorem 2.2 ([Gar18, Corollary 21.2.3])
If two Borel probability measures µ and ν on R have respective probability density functions fµ
and fν , then

W1(µ, ν) ≥
󰀏󰀏󰀏󰀏
󰁝

R
xfµ(x) dx−

󰁝

R
xfν(x) dx

󰀏󰀏󰀏󰀏 .

In other words, the Wasserstein distance between µ and ν is at least the distance between their
means.

Proof. This is a corollary of Proposition 4.1 or Proposition 4.3.

Recall our example Borel probability measures on R:

µ(A) := 108 · λ
󰀕
A ∩

󰀗
0,

1

108

󰀘󰀖

ν(A) := 108 · λ
󰀕
A ∩

󰀗
1

108
,

2

108

󰀘󰀖
, and

ξ(A) := 108 · λ
󰀕
A ∩

󰀗
500, 500 +

1

108

󰀘󰀖
.

Theorem 2.2 together with our earlier discussions yield W1(µ, ν) =
1

108
and W1(µ, ξ) = 500.

5



3 Courante

Theorem 3.1 ([San15, Proposition 2.17])
Let µ, ν ∈ P1(R) have cumulative distribution functions

Fµ(x) := µ((−∞, x]) and Fν(x) := ν((−∞, x])

respectively. Then

W1(µ, ν) =

󰁝

R
|Fµ(x)− Fν(x)| dx.

Proof. Let us define the pseudo-inverses F
[−1]
µ , F

[−1]
ν : [0, 1] → R, where R := R ∪ {−∞,∞}, by

F [−1]
µ (y) := inf{x ∈ R : Fµ(x) ≥ y }, and

F [−1]
ν (y) := inf{x ∈ R : Fν(x) ≥ y },

where we adopt the convention inf ∅ = ∞. Denote by λ|[0,1] the Lebesgue measure on [0, 1].

Define G : [0, 1] → R2
by G(y) := (F

[−1]
µ (y), F

[−1]
ν (y)) and define the measure πmon to be the

restriction to R2 of the image measure of λ|[0,1] under G. That is,

πmon(A) := λ|[0,1]
󰀃
G−1(A)

󰀄
for all Borel A ⊆ R2.

Observe then that πmon ∈ Πµ,ν , because the image measure of λ|[0,1] under F
[−1]
µ , when restricted

to R, is simply µ itself (and similarly for F
[−1]
ν and ν). We claim that this measure πmon is an

optimal solution to the Monge–Kantorovich problem of transporting µ to ν with respect to the
cost function c(x, y) := |x− y|, that is,

W1(µ, ν) =

󰁝

R2

|x− y| dπmon(x, y). (3.1)

If this is shown, then we would obtain

W1(µ, ν) =

󰁝

R2

|x− y| dπmon(x, y) =

󰁝 1

0
|F [−1]

µ (x)− F [−1]
ν (x)| dx

=

󰁝

R
|Fµ(x)− Fν(x)| dx.

It thus remains to show that we do indeed have W1(µ, ν) =
󰁕
R2 |x−y| dπmon(x, y). We start

by approximating the function t 󰀁→ |t| by strictly convex functions.

Lemma 3.2 ([San15, Lemma 2.10])
For all ε > 0 there exists a continuous strictly convex function hε : R → R≥0 such that for all
t ∈ R,

|t| ≤ hε(t) ≤ (1 + ε)|t|+ ε.

Proof of Lemma 3.2. For any ε > 0, the function

hε(t) := |t|+ ε

󰀕
1

2

󰁳
4 + t2 +

1

2
t

󰀖

works.

We are interested in these strictly convex functions hε due to the following Lemma 3.3,
where we will exploit the strict convexity of the functions hε.
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Lemma 3.3 ([San15, Lemma 2.8, Theorem 2.9])
For ε > 0, define cε : R2 → R≥0 by cε(x, y) := hε(x − y). Then πmon is the unique optimal
solution to the Monge–Kantorovich problem of transporting µ to ν with respect to the cost
function cε.

Once Lemma 3.3 has been established, then for any π ∈ Πµ,ν we have

󰁝

R2

|x− y| dπmon(x, y) ≤
󰁝

R2

hε(x− y) dπmon(x, y)

≤
󰁝

R2

hε(x− y) dπ(x, y)

≤ (1 + ε)

󰁝

R2

|x− y| dπ(x, y) + ε,

whence taking the limit ε → 0 yields
󰁕
R2 |x−y| dπmon(x, y) ≤

󰁕
R2 |x−y| dπ(x, y). Consequently,

Equation (3.1) would be established, completing the proof of Theorem 3.1.
The heart of the proof of Theorem 3.1 thus boils down to proving Lemma 3.3. But first,

more definitions and lemmas.
Define the support of a measure π ∈ P (R2) to be

support(π) := { (x, y) ∈ R2 : π(Br((x, y)) > 0 for all r > 0 },

where Br((x, y)) denotes the open ball of radius r > 0 centered around (x, y) ∈ R2.

Lemma 3.4 ([San15, Theorem 1.38])
Fix any optimal π0 ∈ Πµ,ν solving the Monge–Kantorovich problem of transporting µ to ν with
respect to a continuous cost function c̃ : R2 → R≥0. Then for all (x1, y1), (x2, y2) ∈ support(π0),
we have

c̃(x1, y1) + c̃(x2, y2) ≤ c̃(x1, y2) + c̃(x2, y1).

Proof of Lemma 3.4. Suppose, for a contradiction, that

c̃(x1, y1) + c̃(x2, y2) > c̃(x1, y2) + c̃(x2, y1).

Fix any ε > 0 satisfying

0 < ε <
1

4

󰀃
c̃(x1, y1) + c̃(x2, y2)− c̃(x1, y2)− c̃(x2, y1)

󰀄
.

Since c̃ is continuous, there exists r > 0 such that all of the following hold:

• for all x ∈ (x1 − r, x1 + r) and for all y ∈ (y1 − r, y1 + r), we have

c̃(x, y) > c̃(x1, y1)− ε,

• for all x ∈ (x2 − r, x2 + r) and for all y ∈ (y2 − r, y2 + r), we have

c̃(x, y) > c̃(x2, y2)− ε,

• for all x ∈ (x1 − r, x1 + r) and for all y ∈ (y2 − r, y2 + r), we have

c̃(x, y) < c̃(x1, y2) + ε,

• for all x ∈ (x2 − r, x2 + r) and for all y ∈ (y1 − r, y1 + r), we have

c̃(x, y) < c̃(x2, y1) + ε.
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Define the open squaresQj := (xj−r, xj+r)×(yj−r, yj+r) for j ∈ {1, 2}. Since (x1, y1), (x2, y2) ∈
support(π0), we have π0(Q1),π0(Q2) > 0. Let π0|Qj denote the restriction of the measure π0 to
the open square Vj . Define the Borel probability measures on Qj

πj :=
1

π0(Qj)
π0|Qj for each j ∈ {1, 2}

Define the projection maps p1, p2 : R2 → R by p1(x, y) := x and p2(x, y) := y, and for j ∈ {1, 2}:

• define µj to be the measure on R which is the image measure of πj under the map p1,

• define νj to be the measure on R which is the image measure of πj under the map p2.

Fix any 0 < ε0 < 1
2 min{π(Q1),π(Q2)}. Define the product measures γ1 := µ1 × ν2 and

γ2 := µ2 × ν1. Finally, define a measure γ on R2 by

γ := π0 − ε0(π1 + π2) + ε0(γ1 + γ2).

It is easy to check that γ ∈ Πµ,ν . We now claim that we have

󰁝

R2

c̃ dγ <

󰁝

R2

c̃ dπ0,

contradicting the assumption that π0 is optimal. Indeed,

󰁝

R2

c̃ dπ0 −
󰁝

R2

c̃ dγ = ε0

󰀕󰁝

R2

c̃ dπ1 +

󰁝

R2

c̃ dπ2 −
󰁝

R2

c̃ dγ1 −
󰁝

R2

c̃ dγ2

󰀖

≥ ε0

󰀓󰀃
c̃(x1, y1)− ε) +

󰀃
c̃(x2, y2)− ε

󰀄
−
󰀃
c̃(x1, y2) + ε

󰀄
−

󰀃
c̃(x2, y1)− ε

󰀄󰀔

> 0.

Lemma 3.5 ([San15, Theorem 2.9])
Let h̃ : R → R≥0 be a continuous strictly convex function. Fix any optimal π0 ∈ Πµ,ν solving the
Monge–Kantorovich problem of transporting µ to ν with respect to the cost function c̃ : R2 → R≥0

defined by c̃(x, y) := h̃(x−y). Let (x1, y1), (x2, y2) ∈ support(π0) satisfy y1 < y2. Then x1 ≤ x2.

Proof of Lemma 3.5. Suppose, for a contradiction, that x1 > x2. Lemma 3.4 gives us

h̃(x1 − y1) + h̃(x2 − y2) ≤ h̃(x1 − y2) + h̃(x2 − y1).

Then we have, by the strict concavity of h̃, we have

h̃(x1 − y1) + h̃(x2 − y2) ≤ h̃(x1 − y2) + h̃(x2 − y1)

= h̃(t(x1 − y1) + (1− t)(x2 − y2)) + h̃(t(x2 − y2) + (1− t)(x1 − y1))

< th̃(x1 − y1) + (1− t)h̃(x2 − y2) + th̃(x2 − y2) + (1− t)h̃(x1 − y1)

= h̃(x1 − y1) + h̃(x2 − y2),

where t := x1−x2
(x1−x2)+(y2−y1)

∈ (0, 1). This strict inequality is a contradiction.

We are now ready to complete the proof of Lemma 3.3.

Proof of Lemma 3.3. Fix any ε > 0. Certainly, by Proposition 4.1, an optimal solution π0 ∈
Πµ,ν exists for the Monge–Kantorovich problem of transporting µ to ν with respect to the cost
function c̃ε. We aim to show that π0 = πmon.

8



By definition of πmon as the image measure of λ|[0,1] under the map y 󰀁→ (F
[−1]
µ (y), F

[−1]
ν (y)),

this measure πmon is the unique Borel probability measure on R2 satisfying

πmon((−∞, a]× (−∞, b]) = min{F [−1]
µ (a), F [−1]

ν (b)} for all a, b ∈ R.

We will show that π0 also satisfies the equality above, proving that π0 = πmon. Fix any a, b ∈ R.
Then at least one of the sets

A := (−∞, a]× (b,∞) or B := (a,∞)× (−∞, b]

must have measure 0 under π0. If this were not the case, then there would exist points

(x1, y1) ∈ (−∞, a]× (b,∞) and (x2, y2) ∈ (a,∞)× (−∞, b]

violating Lemma 3.5. So we have

π0((−∞, a]× (−∞, b]) = min{π0((−∞, a]× (−∞, b] ∪A),π0((−∞, a]× (−∞, b] ∪B)}
= min{π0((−∞, a]× R),π0(R× (−∞, b])}
= min{F [−1]

µ (a), F [−1]
ν (b)}.

Thus π0 = πmon.

This completes the proof of Lemma 3.3. The proof of Theorem 3.1 is now, at long last,
complete.
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4 Sarabande

We have used quite a few results without justifications. This section is dedicated to filling in
those gaps.

Recall that for a topological spaceX, we use P (X) to denote the space of all Borel probability
measures on X. Recall that we also defined

Πµ,ν := {π ∈ P (X ×X) : π has marginals µ and ν }.

for µ, ν ∈ P (X). Now, denote by C(X) the space of all continuous real-valued functions on X.
We will now show that the Monge–Kantorovich problem has always an optimal solution.

Proposition 4.1 ([Gar18, Theorem 20.2.1, Corollary 20.2.2, Theorem 20.3.1])
Let c : R2 → R≥0 be lower semicontinuous, and fix µ, ν ∈ P (R). Suppose that

inf

󰀝󰁝

R2

c dπ : π ∈ Πµ,ν

󰀞
< ∞.

Define

m := inf

󰀝󰁝

R2

c dπ : π ∈ Πµ,ν

󰀞
and

M := sup

󰀝󰁝

R
f dµ+

󰁝

R
g dν : f, g ∈ C(R) and f(x) + g(y) ≤ c(x, y) for all x, y ∈ R

󰀞
.

Then m = M , and there exists π0 ∈ Πµ,ν such that

󰁝

R2

c dπ0 = m = M.

Proof. Let us first solve the Monge–Kantorovich problem on the compact unit square [0, 1]2 in
the following Lemma 4.2.

Lemma 4.2 ([Gar18, Theorem 20.3.1])
Let c̃ : [0, 1]× [0, 1] → R≥0 be lower semicontinuous, and fix µ̃, ν̃ ∈ P ([0, 1]2). Suppose that

inf

󰀫󰁝

[0,1]2
c̃ dπ̃ : π̃ ∈ Πµ̃,ν̃

󰀬
< ∞.

Define

m̃ := inf

󰀫󰁝

[0,1]2
c̃ dπ̃ : π̃ ∈ Πµ̃,ν̃

󰀬
and

M̃ := sup

󰀫󰁝

[0,1]
f̃ dµ̃+

󰁝

[0,1]
g̃ dν̃ : f̃ , g̃ ∈ C([0, 1]) and f̃(x) + g̃(y) ≤ c̃(x, y) for all x, y ∈ [0, 1]

󰀬
.

Then m̃ = M̃ , and there exists π̃0 ∈ Πµ̃,ν̃ such that

󰁝

[0,1]2
c̃ dπ̃0 = m̃ = M̃.

Proof of Lemma 4.2. Firstly, observe that for all f̃ , g̃ ∈ C([0, 1]) with f̃(x) + g̃(y) ≤ c̃(x, y) and
for all π̃ ∈ Πµ̃,ν̃ , we have

󰁝

[0,1]
f̃ dµ̃+

󰁝

[0,1]
g̃ dν̃ =

󰁝

[0,1]2
(f̃(x) + g̃(y)) dπ̃(x, y) ≤

󰁝

[0,1]2
c̃ dπ̃.
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Consequently, M̃ ≤ m̃.
We now show that there exists π̃0 ∈ Πµ̃,ν̃ such that m̃ ≤

󰁕
[0,1]2 c̃ dπ̃0 ≤ M̃ . Let L be the

space of all functions F̃ : [0, 1]2 → R of the form F̃ (x, y) = f̃(x) + g̃(y) with f̃ , g̃ ∈ C([0, 1]).
Then L is a linear subspace of C([0, 1]2). Observe that the map ϕ : L → R defined by

ϕ
󰀃
f̃(x) + g̃(y)

󰀄
:=

󰁝

[0,1]
f̃ dµ̃+

󰁝

[0,1]
g̃ dν̃

is a well-defined linear functional on L which is not the zero linear functional on L, since
ϕ(1) = 1.

Let U be the space of all continuous real-valued functions h̃ on [0, 1]2 such that

h̃(x, y) < c̃(x, y) for all x, y ∈ [0, 1].

Observe that U satisfies all of the following:

• U ⊂ C([0, 1]2),

• U is non-empty, since −1 ∈ U ,

• U is open in C([0, 1]2), where we give C([0, 1]2) the topology induced by the supremum
norm 󰀂 · 󰀂∞,

• U is convex,

• U ∩ L is non-empty, since −1 ∈ U ∩ L,

• ϕ is bounded above by m̃ on U ∩ L, because if f̃(x) + g̃(y) ∈ U ∩ L and π̃ ∈ Πµ̃,ν̃ then

ϕ
󰀃
f̃(x) + g̃(y)

󰀄
=

󰁝

[0,1]2

󰀃
f̃(x) + g̃(y)

󰀄
dπ̃(x, y) ≤

󰁝

[0,1]2
c̃ dπ̃.

Let B := sup{ϕ(F̃ ) : F̃ ∈ U ∩ L } ≤ m̃, and let

LB :=
󰁱
f̃(x) + g̃(y) ∈ L : ϕ

󰀃
f̃(x) + g̃(y)

󰀄
≥ B

󰁲
.

Then LB satisfies all of the following:

• LB ⊂ C([0, 1]2)

• LB is non-empty, since B ∈ LB,

• LB is convex,

• LB is disjoint from U , because if f̃(x) + g̃(y) ∈ U ∩ L then there exists f̂ ∈ C([0, 1]) such
that

f̃(x) + g̃(y) < f̂(x) + g̃(y) < c̃(x, y) for all x, y ∈ [0, 1],

and consequently

ϕ
󰀃
f̃(x) + g̃(y)

󰀄
=

󰁝

[0,1]
f̃ dµ̃+

󰁝

[0,1]
g̃ dν̃ <

󰁝

[0,1]
f̂ dµ̃+

󰁝

[0,1]
g̃ dν̃ ≤ B.

Thus by the Hahn-Banach theorem, there exists a continuous linear functional ψ : C([0, 1]2) →
R such that

if h̃ ∈ U then ψ(h̃) < K := inf
󰁱
ψ(F̃ ) : F̃ ∈ LB

󰁲
.
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Observe that ψ is a non-negative linear functional on C([0, 1]2), that is,

if h̃ ≥ 0 then ψ(h̃) ≥ 0.

Indeed, if h̃ > 0 then we have −αh̃ ∈ U for all α > 0. So if we had ψ(h̃) < 0 then ψ(−αh̃) =
−αψ(h̃) < K. But if ψ(h̃) < 0 then this cannot hold for all α > 0 .

As ψ ∕= 0, we have ψ(1) > 0. Thus if we set θ := ψ
ψ(1) , then θ is a non-negative linear

functional on C([0, 1]2) with θ(1) = 1. Riesz’s representation theorem thus yields the existence
of some π̃0 ∈ P ([0, 1]2) such that

θ(F̃ ) =

󰁝

[0,1]2
F̃ (x, y) dπ̃0(x, y) for all F̃ ∈ C([0, 1]2).

We claim that this π̃0 is our desired transport plan satisfying m̃ ≤
󰁕
[0,1]2 c̃ dπ̃0 ≤ M̃ .

First, let us show that π̃0 ∈ Πµ̃,ν̃ . Let

Λ := inf{ θ(F̃ ) : F̃ ∈ LB }.

Note that if h̃ ∈ U then θ(h̃) < Λ. Observe that if F̃0 ∈ L satisfies ϕ(F̃0) = 0, then

ϕ
󰀃
B + αF̃0

󰀄
= B for all α ∈ R,

and so B + αF̃0 ∈ LB for all α ∈ R, meaning that

B + αθ(F̃0) = θ
󰀃
B + αF̃0

󰀄
≥ Λ for all α ∈ R,

from which it follows that θ(F̃0) = 0 and hence

B ≥ Λ. (4.1)

Now for any F̃ ∈ L, we can write
F̃ = ϕ(F̃ ) + F̃0

for some F̃0 ∈ L with ϕ(F̃0) = 0. Hence

θ(F̃ ) = θ(ϕ(F̃ ) + F̃0) = ϕ(F̃ ) + θ(F̃0) = ϕ(F̃ ).

In other words, θ extends ϕ from L to all of C([0, 1])2. Thus both of the following hold:

• if f̃ ∈ C([0, 1]) then

󰁝

[0,1]2
f̃(x) dπ̃0(x, y) = θ(f̃(x)) = ϕ(f̃(x)) =

󰁝

[0,1]
f̃(x) dµ̃(x),

• if g̃ ∈ C([0, 1]) then

󰁝

[0,1]2
g̃(y) dπ̃0(x, y) = θ(g̃(y)) = ϕ(g̃(y)) =

󰁝

[0,1]
g̃(y) dν̃(y).

Therefore π̃0 ∈ Πµ̃,ν̃ .
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Finally, we approximate the cost function c̃ from below by a sequence of non-negative func-
tions h̃1, h2, h3, . . . ∈ U with hn ↗ c̃ pointwise as n → ∞ [Gar18, Theorem 4.2.9]. Then

m̃ ≤
󰁝

[0,1]2
c̃ dπ̃0, by the definition of m̃,

= lim
n→∞

󰁝

[0,1]2
h̃n dπ̃0, by the monotone convergence theorem,

≤ sup

󰀫󰁝

[0,1]2
h̃ dπ̃0 : h̃ ∈ U

󰀬
, since h1, h2, h2, . . . ∈ U,

= sup
󰀋
θ(h̃) : h̃ ∈ U

󰀌
, since π̃0 represents θ,

≤ Λ, by the definition of Λ,

≤ B, from Equation (4.1),

= sup
󰀋
ϕ(F̃ ) : F̃ ∈ U ∩ L

󰀌
, by the definition of B,

≤ M̃, by the definitions of M̃, U, and L.

Therefore
󰁕
[0,1]2 c̃ dπ̃0 = m̃ = M̃ , as desired.

We now turn to proving Proposition 4.1, solving the Monge–Kantorovich problem on R.
Recall that

m := inf

󰀝󰁝

R2

c dπ : π ∈ Πµ,ν

󰀞
and

M := sup

󰀝󰁝

R
f dµ+

󰁝

R
g dν : f, g ∈ C(R) and f + g ≤ c

󰀞
,

and we aim to show that m = M . Arguing similarly as in the start of the proof of Lemma 4.2,
we obtain M ≤ m.

Now embed R2 into the compact unit square [0, 1]2 by identifying R2 with the open set (0, 1)2

via an obvious orientation-preserving contracting homeomorphism h : R2 → (0, 1)2. Define
c̃ : [0, 1]2 → R≥0 by

c̃(x, y) :=

󰀫
c(h−1(x, y)) if both x, y ∈ (0, 1),

0 else,

and define µ̃, ν̃ ∈ P ([0, 1]) to be the respective image measures of µ and ν under the map h.
Observe that c̃ is lower semicontinuous. Then Lemma 4.2 yields the existence of some π̃0 ∈ Πµ̃,ν̃

satisfying

󰁝

[0,1]2
c̃ dπ̃0 = sup

󰀫󰁝

[0,1]
f̃ dµ+

󰁝

[0,1]
g̃ dν̃ : f̃ , g̃ ∈ BL([0, 1]) and f̃ + g̃ ≤ c̃

󰀬
.

Now note that

π̃0
󰀃
[0, 1]2 \ (0, 1)2

󰀄
≤ µ̃

󰀃
{0, 1}

󰀄
+ ν̃

󰀃
{0, 1}

󰀄
= µ

󰀃
{0, 1}

󰀄
+ ν

󰀃
{0, 1}

󰀄
= 0.

Hence, letting π̃0|(0,1)2 be the restriction of π̃0 to (0, 1)2, we may define π0 ∈ P (R2) to be the
image measure of π̃0|(0,1)2 under the map h−1. It is easy to check that we indeed have π0 ∈ Πµ,ν ,
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and that

M = sup

󰀝󰁝

R
f dµ+

󰁝

R
g dν : f, g ∈ BL(R) and f + g ≤ c

󰀞

≥ sup

󰀫󰁝

[0,1]
f̃ dµ̃+

󰁝

[0,1]
g̃ dν̃ : f̃ , g̃ ∈ BL([0, 1]) and f̃ + g̃ ≤ c̃

󰀬

≥
󰁝

[0,1]2
c̃ dπ̃0

=

󰁝

R2

c dπ0

≥ m.

This proves that
󰁕
R2 c dπ0 = m = M , and we are done with the proof of Proposition 4.1.

In the definition of the Wasserstein metric (Definition 2.1), we defined the space

P1(R) :=
󰀝
µ ∈ P (R) :

󰁝

R
|x| dµ(x) < ∞

󰀞

and we defined the Wasserstein metric W1 : P1(R)× P1(R) → R≥0 by

W1(µ, ν) := inf

󰀝󰁝

R2

|x− y| dπ(x, y) : π ∈ Πµ,ν

󰀞

Proposition 4.1 shows that we have

W1(µ, ν) = sup

󰀝󰁝

R
f dµ+

󰁝

R
g dν : f, g ∈ C(R) and f(x) + g(y) ≤ |x− y| for all x, y ∈ R

󰀞

for all µ, ν ∈ P1(R). In particular, by considering the cases

• f(x) = x and g(y) = −y, or

• f(x) = −x and g(y) = y,

we obtain

W1(µ, ν) ≥
󰀏󰀏󰀏󰀏
󰁝

R
x dµ(x)−

󰁝

R
y dν(y)

󰀏󰀏󰀏󰀏 ,

which proves Theorem 2.2, stating that the Wasserstein distance between µ and ν is at least
the distance between their means. In fact, we can do better. Denote by Lip(R) the space of all
Lipschitz continuous functions on R. For h ∈ Lip(R), the Lipschitz constant of h is defined to
be

󰀂h󰀂Lip := sup
x,y∈R,
x ∕=y

|h(x)− h(y)|
|x− y| .

Proposition 4.3 ([Gar18, Corollary 21.2.3])
For µ, ν ∈ P1(R) we have

W1(µ, ν) ≥ sup

󰀝 󰀏󰀏󰀏󰀏
󰁝

R
h dµ−

󰁝

R
h dν

󰀏󰀏󰀏󰀏 : h ∈ Lip(R) and 󰀂h󰀂Lip ≤ 1

󰀞
.

Proof. This is a corollary of Proposition 4.1.

The inequality in Proposition 4.3 can actually be proven to be an equality [Gar18, Corollary
21.2.3], but we will not need this fact in this document.

We conclude this section by showing that the Wasserstein metric is indeed a metric on
P1(R), justifying its name.
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Proposition 4.4 ([Gar18, Theorem 21.1.2] [Vil09, Chapter 6])
For all µ, ν ∈ P1(R), the value W1(µ, ν) is finite. Furthermore, W1 : P1(R)×P1(R) → R≥0 is a
metric, that is,

• for all µ, ν ∈ P1(R), we have
W1(µ, ν) = W1(ν, µ),

• for all µ, ν ∈ P1(R), we have

W1(µ, ν) = 0 if and only if µ = ν,

• W1 satisfies the triangle inequality, that is, for all µ, ν, ξ ∈ P1(R), we have

W1(µ, ξ) ≤ W1(µ, ν) +W1(ν, ξ).

Proof. Let us first show that W1(µ, ν) is finite when µ, ν ∈ P1(R). Indeed, the product measure
π := µ× ν ∈ Πµ,ν satisfies

W1(µ, ν) ≤
󰁝

R2

|x− y| dπ(x, y)

=

󰁝

R

󰁝

R
|x− y| dµ(x) dν(y)

≤
󰁝

R

󰁝

R

󰀃
|x|+ |y|

󰀄
dµ(x) dν(y)

=

󰁝

R
|x| dµ(x) +

󰁝

R
|y| dν(y)

< ∞.

We now turn to proving that W1 is a metric on P1(R). The reader might wish to note
that this is an immediate corollary of Theorem 3.1. We present, in the remainder of this proof,
a different proof which more readily generalises to Wasserstein metrics defined over arbitrary
Polish spaces.

Fix µ, ν ∈ P1(R). It is evident from the definition of W1 that W1(µ, ν) = W1(ν, µ). Next,
if µ = ν then clearly the transport plan π0 ∈ Πµ,ν which is the image measure of µ under the
function R ∋ x 󰀁→ (x, x) ∈ R2 satisfies

0 ≤ W1(µ, ν) ≤
󰁝

R2

|x− y| dπ0(x, y) = 0.

On the other hand, if µ ∕= ν, then there exists a compact interval [a, b] ⊂ R such that

µ([a, b]) ∕= ν([a, b]).

Supposing, without loss of generality, that µ([a, b]) > ν([a, b]), we let

ε :=
1

2

󰀃
µ([a, b])− ν([a, b])

󰀄
> 0.

Now, there exists δ > 0 such that

ν((a− δ, b+ δ)) < ν([a, b]) + ε.
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Consequently, for any π ∈ Πµ,ν , we have

󰁝

R2

|x− y| dπ(x, y) ≥
󰁝

[a,b]×
󰀃
R\(a−δ,b+δ)

󰀄 |x− y| dπ(x, y)

≥
󰁝

[a,b]×
󰀃
R\(a−δ,b+δ)

󰀄 δ dπ(x, y)

= δ · π
󰀓
[a, b]×

󰀃
R \ (a− δ, b+ δ)

󰀄󰀔

= δ ·
󰀓
π
󰀃
[a, b]× R

󰀄
− π

󰀃
[a, b]× (a− δ, b+ δ)

󰀄󰀔

≥ δ ·
󰀓
π
󰀃
[a, b]× R

󰀄
− π

󰀃
R× (a− δ, b+ δ)

󰀄󰀔

= δ ·
󰀃
µ([a, b])− ν((a− δ, b+ δ))

󰀄

≥ δε.

Hence W1(µ, ν) ≥ δε > 0.
Finally, we show that W1 satisfies the triangle inequality. Fix µ, ν, ξ ∈ P1(R). As the

Monge–Kantorovich problem always has a solution (see Proposition 4.1), there exist π1 ∈ Πµ,ν

and π2 ∈ Πν,ξ such that

W1(µ, ν) =

󰁝

R2

|x− y| dπ1(x, y) and W1(ν, ξ) =

󰁝

R2

|x− y| dπ2(x, y).

We interrupt the proof with the following technical Lemma 4.5 to obtain a measure γ ∈
P (R3) which “glues” together the transport plans π1 and π2.

Lemma 4.5 (Gluing Lemma [Aki22] [Gar18, Theorem 16.1.1])
Define the projection maps p1,2, p2,3, p1,3 : R3 → R2 by

pi,j(x1, x2, x3) := (xi, xj).

Then there exists γ ∈ P (R3) such that, when we define γi,j to be the image measure of γ under
pi,j, we obtain

γ1,2 = π1 and γ2,3 = π2.

Proof of Lemma 4.5. By disintegration of measures [Aki22] [Gar18, Theorem 16.10.1], there
exists a collection of measures {π1(·|y)}y∈R ⊆ P (R) such that

π1(X × Y ) =

󰁝

Y
π1(X|y) dν(y) for all Borel X,Y ⊆ R.

Similarly, there exists a collection of measures {π2(·|y)}y∈R ⊆ P (R) such that

π2(Y × Z) =

󰁝

Y
π2(Y |y) dν(y) for all Borel Y, Z ⊆ R.

Then the unique measure γ ∈ P (R3) satisfying

γ(X × Y × Z) =

󰁝

Y
π1(X|y)π2(Z|y) dν(y) for all Borel X,Y, Z ⊆ R

works.
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Returning to the proof of the triangle inequality in Proposition 4.4, we take the measure γ
obtained from Lemma 4.5. It is easy to check that γ1,3 ∈ Πµ,ξ. We thus obtain

W1(µ, ξ) ≤
󰁝

R2

|x− z| dγ1,3(x, z)

=

󰁝

R3

|x− z| dγ(x, y, z)

≤
󰁝

R3

|x− y| dγ(x, y, z) +
󰁝

R3

|y − z| dγ(x, y, z)

=

󰁝

R2

|x− y| dγ1,2(x, y) +
󰁝

R2

|y − z| dγ2,3(y, z)

=

󰁝

R2

|x− y| dπ1(x, y) +
󰁝

R2

|y − z| dπ2(y, z)

= W1(µ, ν) +W1(ν, ξ).

This completes the proof of Proposition 4.4, showing that W1 is a metric on P1(R).
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5 Bourrée

Theorem 5.1 ([Eva24])
Let µ, ν ∈ P1(R) have probability density functions f, g ∈ C1 respectively. Then there exists
C > 0 such that

󰁝

R
|f(x)− g(x)| dx ≤ C

󰁶󰀕󰁝

R
(|f ′(x)|+ |g′(x)|) dx

󰀖
W1(µ, ν).

Proof. First, recall that

󰁝

R
|f(x)− g(x)| dx ≤ sup

ϕ∈C∞
c

󰀂ϕ󰀂∞≤1

󰀕󰁝

R
f(x)ϕ(x) dx−

󰁝

R
g(x)ϕ(x) dx

󰀖
,

where C∞
c is the space of all smooth functions with compact support, and 󰀂·󰀂∞ is the supremum

norm.
Fix any smooth positive function η : R → R with compact support in the open unit interval

(0, 1) and
󰁕
R η(x) dx = 1. For any ϕ ∈ C∞

c with 󰀂ϕ󰀂∞ ≤ 1, the convolution

(ϕ ∗ η)(x) :=
󰁝

R
ϕ(y)η(x− y) dy =

󰁝

R
ϕ(x− y)η(y) dy

is differentiable, and (ϕ ∗ η)′ = ϕ ∗ η′. Hence the Lipschitz constant 󰀂ϕ ∗ η󰀂Lip of ϕ ∗ η satisfiies

󰀂ϕ ∗ η󰀂Lip ≤ 󰀂ϕ ∗ η′󰀂∞ ≤ 󰀂ϕ󰀂∞󰀂η′󰀂L1 ≤ 󰀂η′󰀂L1 .

For ε > 0, define ηε : R → R by ηε(x) := η(εx). Note that 󰀂ϕ ∗ ηε󰀂Lip ≤ 󰀂η′󰀂L1 .
Now, 󰁝

R
f(x)ϕ(x) dx−

󰁝

R
g(x)ϕ(x) dx = I + II + III,

where

I :=

󰁝

R
f(x)ϕ(x) dx− ε

󰁝

R
f(x)(ϕ ∗ ηε)(x) dx,

II := ε

󰁝

R
f(x)(ϕ ∗ ηε)(x) dx− ε

󰁝

R
g(x)(ϕ ∗ ηε)(x) dx, and

III := ε

󰁝

R
g(x)(ϕ ∗ ηε)(x) dx−

󰁝

R
g(x)ϕ(x) dx.

Note that ϕ ∗ ηε is Lipschitz, so Proposition 4.3 gives us

|II| ≤ ε󰀂ϕ ∗ ηε󰀂LipW1(µ, ν) ≤ ε󰀂η′󰀂L1W1(µ, ν).

Next, using the substitution z := x− y, we have

I =

󰁝

R
f(x)ϕ(x) dx− ε

󰁝

R
f(x)(ϕ ∗ ηε)(x) dx

=

󰁝

R
f(x)ϕ(x) dx− ε

󰁝

R
f(x)

󰀕󰁝

R
ϕ(x− y)ηε(y) dy

󰀖
dx

=

󰁝

R
f(x)ϕ(x) dx− ε

󰁝

R

󰁝

R
f(x)ϕ(x− y)ηε(y) dy dx

=

󰁝

R
f(x)ϕ(x) dx− ε

󰁝

R

󰁝

R
f(z + y)ϕ(z)ηε(y) dy dz.
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Since
󰁕
R ηε(y) dy = 1

ε , we multiply the first term with ε
󰁕
R ηε(y) dy to get

I = ε

󰁝

R

󰁝

R
f(x)ϕ(x)ηε(y) dy dx− ε

󰁝

R

󰁝

R
f(x+ y)ϕ(x)ηε(y) dy dx

= ε

󰁝

R

󰁝

R
(f(x)− f(x+ y))ϕ(x)ηε(y) dy dx

= ε

󰁝

R

󰁝

R

󰀕󰁝 x

x+y
f ′(z) dz

󰀖
ϕ(x)ηε(y) dy dx

= −ε

󰁝

R

󰁝

R

󰀕󰁝 1

0
f ′(x+ ty)y dt

󰀖
ϕ(x)ηε(y) dy dx

= −ε

󰁝 1

0

󰁝

R

󰁝

R
f ′(x+ ty) · ϕ(x) · y · ηε(y) dx dy dt.

Making the substitution ξ := x+ ty on the innermost integral, we obtain

I = −ε

󰁝 1

0

󰁝

R

󰁝

R
f ′(ξ) · ϕ(ξ − ty) · y · ηε(y) dξ dy dt,

hence

|I| ≤ ε

󰁝 1

0

󰁝

R

󰁝

R
|f ′(ξ) · 󰀂ϕ󰀂∞ · |y| · ηε(y) dξ dy dt

≤ ε

󰀕󰁝

R
|f ′(ξ)| dξ

󰀖󰀕󰁝

R
|y|ηε(y) dy

󰀖

= ε

󰀕󰁝

R
|f ′(ξ)| dξ

󰀖󰀕󰁝

R
|y|η(εy) dy

󰀖
.

The substitution ỹ := εy finally gives us

|I| ≤ 1

ε

󰀕󰁝

R
f ′(ξ) dξ

󰀖󰀕󰁝

R
|ỹ|η(ỹ) dỹ

󰀖
.

Similarly,

|III| ≤ 1

ε

󰀕󰁝

R
|g′(x)| dx

󰀖󰀕󰁝

R
|y|η(y) dy

󰀖
.

Therefore, from
󰁕
R f(x)ϕ(x) dx−

󰁕
R g(x)ϕ(x) dx ≤ |I|+ |II|+ |III|, we obtain

󰁝

R
|f(x)− g(x)| dx ≤ 1

ε

󰀕󰁝

R
|y|η(y) dy

󰀖󰀕󰁝

R
|
󰀃
f ′(x)|+ |g′(x)|

󰀄
dx

󰀖
+ ε󰀂η′󰀂L1W1(µ, ν).

When we fix constants A,B > 0, the value of ε > 0 which minimises the function ε 󰀁→ 1
εA+ εB

is ε =
󰁴

A
B where we attain the minimum value of 2

√
AB. Therefore

󰁝

R
|f(x)− g(x)| dx ≤ 2

󰁶

󰀂η′󰀂L1

󰀕󰁝

R
|y|η(y) dy

󰀖󰀕󰁝

R

󰀃
|f ′(x)|+ |g′(x)|

󰀄
dx

󰀖
W1(µ, ν),

as desired, proving Theorem 5.1.
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6 Gigue

We now define Boltzmann’s H functional, which represents the relative entropy5 between two
Borel probability measures on R.

Definition 6.1 (Relative entropy, [Vil09, Chapter 22])
Let µ, ν ∈ P (R). If the Radon–Nikodym derivative ρ := dµ

dν exists, we define

H(µ|ν) :=
󰁝

R
ρ log(ρ) dν.

Otherwise we define H(µ|ν) := ∞.

Observe that always have H(µ|ν) ≥ 0. To see this, first note that
󰁕
R ρ dν =

󰁕
R dµ = 1.

Consequently, 󰁝

R
ρ log(ρ) dν =

󰁝

R
(ρ log ρ− ρ+ 1) dν ≥ 0

due to the fact that x log(x)−x+1 ≥ 0 for all x > 0. We are thus justified in taking the square
root

󰁳
H(µ|ν), and we will do so in Theorem 6.2.

Theorem 6.2 ([Vil09, Definition 22.1, Theorem 22.10])
Let ν ∈ P1(R). Suppose there exists C > 0 such that for all Borel sets A ⊆ R,

if ν(A) ≥ 1

2
, then for all r > 0 we have ν(Ar) ≥ 1− e−Cr2 ,

where Ar :=
󰀋
x ∈ R : inf{ |x − y| : y ∈ A } ≤ r

󰀌
. Then there exists a constant K > 0 such

that for all µ ∈ P1(R) which is absolutely continuous with respect to ν, we have

W1(µ, ν) ≤ K
󰁳

H(µ|ν).

Proof. For a signed measure η, let η = η+ − η− be the Jordan decomposition of η, so η+ and
η− are non-negative measures. We define the absolute variation of η to be the measure

|η| := η+ + η−.

We connect the absolute variation to the Wasserstein distance in the following Lemma 6.3.

Lemma 6.3 ([Vil09, Theorem 6.15])
For all µ, ξ ∈ P1(R) and all x0 ∈ R, we have

W1(µ, ξ) ≤
󰁝

R
|x− x0| d|µ− ξ|(x).

Proof of Lemma 6.3. Define π1 to be the image measure of min{µ, ξ} under the map R ∋
x 󰀁→ (x, x) ∈ R2. Define π2 to be the product measure of (µ − ξ)+ and (µ − ξ)−, and define
a := (µ− ξ)+(R) = (µ− ξ)−(R). Then define π ∈ P (R2) by

π := π1 +
1

a
π2.

5The letter H which appears here is the Greek H (capital η), rather than the Latin H (capital h).
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Then π ∈ Πµ,ξ, and so

W1(µ, ξ) ≤
󰁝

R2

|x− y| dπ(x, y)

=
1

a

󰁝

R2

|x− y| dπ2(x, y)

=
1

a

󰁝

R

󰁝

R
|x− y| d(µ− ξ)+(x) d(µ− ξ)−(y)

=
1

a

󰁝

R

󰁝

R
|x− x0| d(µ− ξ)+(x) d(µ− ξ)−(y)

+
1

a

󰁝

R

󰁝

R
|x0 − y| d(µ− ξ)+(x) d(µ− ξ)−(y)

=

󰁝

R
|x− x0| d(µ− ξ)+(x) +

󰁝

R
|x0 − y| d(µ− ξ)−(y)

=

󰁝

R
|x− x0| d((µ− ξ)+ + (µ− ξ)−)(x)

=

󰁝

R
|x− x0| d|µ− ξ|(x).

Let us now turn to proving Theorem 6.2. We first prove the following Lemma 6.4, which
establishes the finiteness of an integral we will use in the final proof of Theorem 6.2.

Lemma 6.4 ([Vil09, Theorem 22.10])
There exist x0 ∈ R and k > 0 such that the integral

󰁝

R
ek(x−x0)2 dν(x)

is finite.

Proof of Lemma 6.4. Fix any compact set A ⊂ R such that ν(A) ≥ 1
2 . Fix any x0 ∈ A, and

let R := max{ |x − y| : x, y ∈ A } be the diameter of A. Let d(·, A) : R → R≥0 be the distance
function from A, defined by

d(x,A) := min{ |x− y| : y ∈ A }.

Then d(·, A) has median 0, that is,

ν
󰀃
{x ∈ R : d(x,A) ≥ 0 }

󰀄
≥ 1

2
and ν

󰀃
{x ∈ R : d(x,A) ≤ 0 }

󰀄
≥ 1

2
.

By the hypothesis of Theorem 6.2, for all r > 0 and for all r̃ ∈ (0, r), we have

ν
󰀃
{x ∈ R : d(x,A) ≤ 0 }r̃

󰀄
≥ 1− e−Cr̃2 .

Consequently,
ν
󰀃
{x ∈ R : d(x,A) ≥ r }

󰀄
≤ e−Cr̃2 .

As the above inequality holds for all r̃ ∈ (0, r), we obtain

ν
󰀃
{x ∈ R : |x− x0| ≥ R+ r }

󰀄
≤ ν

󰀃
{x ∈ R : d(x,A) ≥ r }

󰀄
≤ e−Cr2

for all r > 0.
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Now choose any 0 < k < C. Then we would have
󰁝

R
ek(x−x0)2 dν(x) =

󰁝

R

󰁝 |x−x0|

0
2kseks

2
ds dν(x) + 1

=

󰁝

R

󰁝 ∞

0
2kseks

2

s≤|x−x0| ds dν(x) + 1

=

󰁝 ∞

0

󰁝

R
2kseks

2

s≤|x−x0| dν(x) ds+ 1

=

󰁝 ∞

0
2kseks

2
ν
󰀃
{x ∈ R : |x− x0| ≥ s}

󰀄
ds+ 1

=

󰁝 R

0
2kseks

2
ν
󰀃
{x ∈ R : |x− x0| ≥ s}

󰀄
ds

+

󰁝 ∞

R
2kseks

2
ν
󰀃
{x ∈ R : |x− x0| ≥ s}

󰀄
ds

+ 1

≤
󰁝 R

0
2kseks

2
ds+

󰁝 ∞

R
2kseks

2
e−C(s−R)2 ds+ 1

=

󰁝 R

0
2kseks

2
ds+ 2ke−CR2

󰁝 ∞

R
se−(C−k)s2+2CRs ds+ 1

< ∞.

Returning to the proof of Theorem 6.2, let us take x0 ∈ R and k > 0 from the conclusion of
Lemma 6.4. By virtue of Lemma 6.3, it suffices to show that

󰁝

R
|x− x0| d|µ− ν|(x) ≤ K

󰁳
H(µ|ν)

for some constant K > 0.
As µ is absolutely continuous with respect to ν, the Radon–Nikodym derivative ρ := dµ

dν
exists. Define ρ̃ : R → R by ρ̃(x) := ρ(x)− 1, and define h : [−1,∞) → R≥0 by

h(s) :=

󰀫
(1 + s) log(1 + s)− s if s > −1,

1 if s = −1.

Then we can rewrite H(µ|ν) as
H(µ|ν) =

󰁝

R
(h ◦ ρ̃) dν.

Now, Taylor expanding h around 0 with integral remainder gives

h(s) =

󰁝 s

0

s− t

1 + t
dt = s2

󰁝 1

0

1− t

1 + ts
dt.

for s ≥ 0, since h(0) = h′(0) = 0. Hence

H(µ|ν) =
󰁝

R

󰁝 1

0

(ρ̃(x))2(1− t)

1 + tρ(x)
dt dν(x),

and so by the Cauchy–Schwarz inequality,

H(µ|ν)
󰁝

R

󰁝 1

0
k(1− t)(x− x0)

2(1 + tρ̃(x)) dt dν(x)

≥
󰀕󰁝

R

󰁝 1

0
(1− t) ·

√
k|x− x0| · |ρ̃(x)| dt dν(x)

󰀖2

=
1

4

󰀕󰁝

R

√
k|x− x0| · |ρ̃(x)| dν(x)

󰀖2

.
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Thus we obtain
󰁝

R

√
k|x− x0| d|µ− ν|(x) =

󰁝

R

√
k|x− x0| · |ρ̃(x)| dν(x) ≤ Kµ

󰁳
H(µ|ν)

where

Kµ := 2

󰁶󰁝

R

󰁝 1

0
k(1− t)(x− x0)2(1 + tρ̃(x)) dt dν(x)

= 2

󰁶󰁝

R

󰁝 1

0
k(1− t)(x− x0)2 dt dν(x) +

󰁝

R

󰁝 1

0
kt(1− t)(x− x0)2ρ̃(x) dt dν(x)

= 2

󰁶󰁝

R

󰁝 1

0
k(1− t)2(x− x0)2 dt dν(x) +

󰁝

R

󰁝 1

0
kt(1− t)(x− x0)2(1 + ρ̃(x)) dt dν(x)

= 2

󰁶
1

3

󰁝

R
k(x− x0)2 dν(x) +

1

6

󰁝

R
k(x− x0)2 dµ(x).

The only trouble now is to bound the term
󰁕
R(x−x0)

2 dµ(x) from above in terms of H(µ|ν).
To do this, we use the following Lemma 6.5.

Lemma 6.5 ([Vil09, Equation 22.7, Equation 22.21] [Led01, Equation 5.13])
We have 󰁝

R
k(x− x0)

2 dµ(x) ≤ H(µ|ν) + log

󰀕󰁝

R
ek(x−x0)2 dν(x)

󰀖
.

Proof of Lemma 6.5. We will use the fact that for all s, t ∈ R with s ≥ 0 we have

st ≤ s log(s)− s+ et,

which can be obtained from a generalisation of Young’s inequality [MN11, Equation 1.3]. Then

󰁝

R
k(x− x0)

2 dµ(x) =

󰁝

R
ρ(x)k(x− x0)

2 dν(x)

≤
󰁝

R

󰀓
ρ(x) log(ρ(x))− ρ(x) + ek(x−x0)2

󰀔
dν(x)

= H(µ|ν)− 1 +

󰁝

R
ek(x−x0)2 dν(x)

≤ H(µ|ν) +
󰁝

R
ek(x−x0)2 dν(x).

Returning to the proof of Theorem 6.2, we obtain

Kµ ≤ 2

󰁶
1

3

󰁝

R
k(x− x0)2 dν(x) +

1

6
H(µ|ν) + 1

6
log

󰀕󰁝

R
ek(x−x0)2 dν(x)

󰀖

By Jensen’s inequality, as log is concave,

󰁝

R
k(x− x0)

2 dν(x) =

󰁝

R
log

󰀓
ek(x−x0)2

󰀔
dν(x) ≥ log

󰀕󰁝

R
ek(x−x0)2 dν(x)

󰀖
. (6.1)

It follows that

Kµ ≤ 2

󰁶
1

6
H(µ|ν) + 1

2
log

󰀕󰁝

R
ek(x−x0)2 dν(x)

󰀖
,
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whence

󰁝

R

√
k|x− x0| d|µ− ν|(x) ≤

󰁶
2

3
(H(µ|ν))2 + 2H(µ|ν) log

󰀕󰁝

R
ek(x−x0)2 dν(x)

󰀖
. (6.2)

On the other hand, due to the Cauchy-Schwarz inequality and the inequality |t| ≤ t+ 2 for
t ∈ [−1,∞), we have

󰁝

R

√
k|x− x0| d|µ− ν|(x)

=

󰁝

R

√
k|x− x0| · |ρ̃(x)| dν(x)

≤

󰁶󰁝

R
k(x− x0)2|ρ̃(x)| dν(x)

󰁶󰁝

R
|ρ̃(x)| dν(x)

≤

󰁶󰁝

R
k(x− x0)2ρ(x) dν(x) +

󰁝

R
k(x− x0)2 dν(x)

󰁶󰁝

R
ρ(x) dν(x) +

󰁝

R
dν

=

󰁶󰁝

R
k(x− x0)2 dµ(x) +

󰁝

R
k(x− x0)2 dν(x)

󰁶󰁝

R
dµ+

󰁝

R
dν

=

󰁶󰁝

R
k(x− x0)2 dµ(x) +

󰁝

R
k(x− x0)2 dν(x)×

√
2.

Applying Lemma 6.5 and Equation (6.1) to the inequality above yields

󰁝

R

√
k|x− x0| d|µ− ν|(x) ≤

󰁶

H(µ|ν) + 2 log

󰀕󰁝

R
ek(x−x0)2 dν(x)

󰀖
×
√
2. (6.3)

Combining Equation (6.2) and Equation (6.3), we obtain

󰁝

R
|x− x0| d|µ− ν|(x)

≤ 1√
k
min

󰀫󰁶
2

3
(H(µ|ν))2 + 2H(µ|ν) log

󰀕󰁝

R
ek(x−x0)2 dν(x)

󰀖
,

󰁶

2H(µ|ν) + 4 log

󰀕󰁝

R
ek(x−x0)2 dν(x)

󰀖󰀬
.

Recall that
󰁕
R ek(x−x0)2 dν(x) is finite, due to Lemma 6.4.

Finally, for any fixed a1, a2, b1, b2 ∈ R with a1, b1 > 0, there exists L > 0 such that

min{a1t2 + a2t, b1t+ b2} ≤ Lt for all t ≥ 0.

Consequently, there exists K > 0 such that

󰁝

R
|x− x0| d|µ− ν|(x) ≤ K

󰁳
H(µ|ν).

This, together with Lemma 6.3, completes the proof of Theorem 6.2.
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