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1 Prelude

Suppose we have probability measures © and v on a sample space X. How should one quantify
how “different” the two probability measures are? If the sample space is X = R and the
measures 4 and v admit probability density functions f and g respectively, so that u(A) =
S f(z)dz and v(A) = [, g(x) dz, then a quantity which could measure the “distance” between
wand v is

If =gl = / (@) - g()] de.

If || f — gl 11 is close to O then we would say that the two measures are really close to each other,
and if || f — g||z1 is close to 2 then we would say that the two measures are really quite different
from each other.

There are two problems with this approach. Firstly, some measures may not even admit a
probability density function. For instance, the Dirac measure dy on R given by

1 if0e A,
do(A) = {

0 else.

The elephant in the room, though, is that the L' distance between f and g may not match up
with our intuitive notion of how far measures p and v may be from each other. Consider, for
instance, the measures p and v having densities
8 - 1 8 1 2
f($)::{10 if0 <o < s, {10 if oy <z < &,

and T) =
0 else, 9(@)

respectively. Then ||f — g||;1 = 2, which as large as ||f — g||z1 could possibly be, and so we
would say that p and v are “really far apart from each other”. There is, however, still a sense

in which g and v are really close to each other: the graph of g is just the graph of f translated
to the right by a mere 10~® units. Furthermore, if we consider a third measure ¢ with density

8 : 1
ha) :{10 if 500 < 2 < 500 + 15,

0 else,

then we would also have ||f — k|1 = 2. The L' distance is unable to capture this huge shift of
500 units to the right; it is unable to distinguish p from £ any more than it can distinguish pu
from v.

Instead, we turn to a way of quantifying the distance between two probability measures p
and v based off of this intuitive notion of how much “effort” would it take to “move” from u to
v. Underpinning this whole theory is the Monge-Kantorovich problem [Garl8, Chapter 20.2]
[RR, Chapter 2.1], named after Gaspard Monge and Leonid Kantorovich (Russian: Jleonus
Kanroposuu):

The Monge—Kantorovich problem.

Fix Polish spaces X and Y, and a lower semicontinuous cost function ¢: X x Y —
R>p. Given two Borel probability measures ;¢ and v on X and Y respectively, the
Monge-Kantorovich problem seeks to minimise! the following total cost:

/ cdm,
XxY

with 7 ranging over the space of all Borel probability measures on X X Y with

marginals p and v.

LA priori, we seek to find the infimum value of fXXY ¢(z,y) dmr, rather than the minimum value. It will turn
out that the infimum value is actually always achieved (see Proposition 4.1).



An intuitive view of the Monge—Kantorovich problem is as follows. Suppose you had a pile
of sand spread about in a space X according to a probability measure u, and you wished to
transport that pile of sand to a space Y and spreading it out according to a probability measure
v. Moving one particle of sand from x € X to y € Y costs $c(x,y). A transport plan 7 tells
you how you should move the pile of sand: a volume of space B C Y gets m(A x B) of the sand
available the volume of space A C X. Of course, there are restrictions for what constitutes a
transport plan: after the transportation has finished, the amount of sand in any B C Y should
equal 7(X x B). Similarly, the amount of sand leaving any A C X should equal 7(A x Y).

It is these restrictions which are captured by the requirement that 7 has marginals p and
v, that is, given the projection maps px: X XY — X and py: X XY — Y defined by

px(z,y) =z and py(z,y) =y,

we require that u is the image measure of 7 under the map px, and v is the image measure of
7 under the map py.

A transport plan always exists: the product measure m = p x v works. The Monge—
Kantorovich problem, however, seeks to find the optimal transport plan. It is an important
result that the Monge-Kantorovich problem always has a solution, in the sense that an optimal
transport plan always exists (see Proposition 4.1). It is this fact that allows us to develop the
Wasserstein metric?, which we will define in the Allemande section. The subsequent sections of
this expository piece explores properties of the Wasserstein metric on the real line. Most of the
definitions and results, except for the results in the Courante section, can be generalised to work
on R? or even on arbitrary Polish spaces. For simplicity, however, we will only be interested in
developing the theory on the real line.

Section 2, titled Allemande, defines the Wasserstein metric W7 on the real line, and demon-
strates it with a simple example. Section 3, titled Courante, connects the Wasserstein dis-
tance between two probability measures with their cumulative density functions. Section 4,
titled Sarabande, fills in all the proofs omitted from the previous three sections. Section 5
and Section 6, titled Bourrée and Gigue respectively, establishes lower and upper bounds on
the Wasserstein metric with other objects which also capture some idea of “distance” between
measures.

2Also known as the Kantorovich-Rubinstein metric or the Earth Mover’s distance [Vil09, Chapter 6 Biblio-
graphical Notes].




2 Allemande

From now onwards, for a topological space X, let us use P(X) to denote the space of Borel
probability measures on X, though we will mainly be concerned with the spaces P(R) and
P(R?). For u,v € P(R), we define the space

Il,, = {7 € P(R?) : 7 has marginals y and v }.

We shall use the cost function c¢: R x R — R>¢ given by c(z,y) = |z — y| to define the
Wasserstein metric, named after Leonid Vaserstein® (Russian: Jleonun Bacepmreiin), on the
subspace

P®) = { e PR [ lalduta) < o0 }.

Definition 2.1 (The Wasserstein metric W; [Garl8, Chapter 21] [Vil09, Definition 6.1, Defi-
nition 6.4])
We define the function Wy: Pi(R) x Pi(R) — Rx, called the Wasserstein metric*, by

Wi(p,v) = inf { / |z —yldr(z,y) :me1l,, } .
R2

The Wasserstein metric W is indeed a metric on P;(R) (see Proposition 4.4), so it captures
the ideas of “distance” between measures as one would expect, including the triangle inequality.

Calculating Wi (u, v) for specific probability measures p and v can be challenging given only
this definition. Often, if there is enough similarity between p and v, we can obtain an upper
bound for Wi (u,v) by finding a suitable transport plan from u to v. Recall again the measures
from the Prelude section:

p(A) == 10%- X <Am [0, 1—(1)8D and v(A) = 10%-\ (Am [%08 1—§8D :

where A is the Lebesgue measure on R. Consider the transport plan T: R — R given by
T(x) = =+ ﬁ. Let G: R — R? be defined by G(z) := (z,T(z)), and define the Borel
probability measure 7 on R? to be the image measure of y under G, that is,

m(A) = (G (A)).
Then 7 has marginals p and v, and we observe that
[l = ldn(en) = 15
R2 y ™ 73/ - 108’

yielding 0 < Wy (u,v) < ﬁ. Given that the graph of the distribution of v is just a translation of

# units to the right of the graph of the distribution of y, would it not be nice if Wi (u,v) = %?
Furthermore, if we recall the other Borel probability measure £ from the Prelude section, namely

1
£(A) =10% X (A N [500, 500 + 1_08D ;

3Leonid Vaserstein was actually not the first person to come up with the Wasserstein metric. The metric
is due to Leonid Kantorovich and Gennadii Rubinstein (Russian: I'ennamun Py6unmreitn) [Vil09, Chapter 6
Bibliographical Notes] [Vil09, Chapter 3].

4The appearance of the subscript “1” in the notations “W;” and “P;” is due to the definition of the more
general Wasserstein p-metric W,,, defined by

1/p
Wp(u,v) = (inf { / |z —y|Pdr(z,y) : 7 € Uy, }) ,
R2

where 1 < p < co. This metric W, will be defined on the space P,(R) consisting of all u € P(R) such that
Je lzP dp(z) < co.




a similar argument to the one above would yield 0 < Wi (p,&) < 500. Again, it would be

wonderful if we indeed had Wi (u, ) = 500.

Theorem 2.2 ([Garl8, Corollary 21.2.3])

If two Borel probability measures p and v on R have respective probability density functions f,

and f,, then
Wi(p,v) > ‘/R:vfu(az)d:c—/Rxf,,(m) dz

In other words, the Wasserstein distance between p and v is at least the distance between their

means.
Proof. This is a corollary of Proposition 4.1 or Proposition 4.3.

Recall our example Borel probability measures on R:

[ 1
—108.
pu(A) =10 - X (Aﬁ _O, 108])
v(A)=10%-A (AN 12 and
o 11087108 )’

E(A) = 10%- X (A N _500, 500 + iD .

108

Theorem 2.2 together with our earlier discussions yield Wy (u,v) =

1
108

and Wi (u, &) = 500.

O



3 Courante

Theorem 3.1 ([Sanl5, Proposition 2.17])
Let p,v € Pi(R) have cumulative distribution functions

Fu(@) == p((—00,2)) and  Fy(x) = v((—o0,a])
respectively. Then

Wis0) = [ |Fule) = Fy(a)| do

Proof. Let us define the pseudo-inverses F,[fl}, F,Eil] : [0,1] — R, where R := R U {—00, o}, by

FIL_”(y) =inf{zx e R: F,(z)

>y}, and
Fi(y) =inf{z e R: F(z) >y},

where we adopt the convention inf @ = oo. Denote by Alj ;] the Lebesgue measure on [0, 1].

Define G: [0,1] — R’ by G(y) = (Fl[fl] (y),F,Lfl] (y)) and define the measure myen to be the
restriction to R? of the image measure of Aljo,1) under G. That is,

Tmon(A) = A|p,1)(G7'(A)) for all Borel A C R*,

]

Observe then that mmen € II, ., because the image measure of | 0,1 under F, l[l_l , when restricted

to R, is simply u itself (and similarly for F,Eil] and v). We claim that this measure oy, is an
optimal solution to the Monge—Kantorovich problem of transporting u to v with respect to the
cost function ¢(z,y) = |z — y|, that is,

Wiev) = [ lo = ol dmmcne.). (3.1)

If this is shown, then we would obtain

1
Wige) = [ o= sldmuon(ay) = [ IFe) = B @) ds
:/RFM(a;)—F,,(xﬂdx.

It thus remains to show that we do indeed have Wy (p,v) = [po |2 —y| dmmon (2, y). We start
by approximating the function ¢ — |t| by strictly convex functions.

Lemma 3.2 ([Sanl5, Lemma 2.10])
For all € > 0 there exists a continuous strictly convex function h.: R — R>q such that for all
teR,

[t < he(t) < (14¢)ft| +e.

Proof of Lemma 3.2. For any € > 0, the function

1 1
he(t) = |t| +¢€ <§\/4 +t2 + §t>

works. O

We are interested in these strictly convex functions h. due to the following Lemma 3.3,
where we will exploit the strict convexity of the functions h..



Lemma 3.3 ([Sanl5, Lemma 2.8, Theorem 2.9])

For e > 0, define c.: R? — Rsq by ce(z,y) = he(x —y). Then Tmon is the unique optimal
solution to the Monge—Kantorovich problem of transporting p to v with respect to the cost
function c..

Once Lemma 3.3 has been established, then for any 7= € II,, , we have

/ & — 4] dmon (2, 4) < / he(@ — ) dmon(, 9)
R2 R2
< / he(z — y) dn(z, y)
]RZ
s<1+e>/ 2 — yldn(z,y) + ¢,
RZ

whence taking the limit ¢ — 0 yields [z [ —y| dTmon(2,y) < [go [z —y|dm(x,y). Consequently,
Equation (3.1) would be established, completing the proof of Theorem 3.1.

The heart of the proof of Theorem 3.1 thus boils down to proving Lemma 3.3. But first,
more definitions and lemmas.

Define the support of a measure m € P(R?) to be

support(m) == { (z,y) € R* : 7(B,((x,y)) >0 forall r >0},
where B,.((z,y)) denotes the open ball of radius r > 0 centered around (z,y) € R?.

Lemma 3.4 ([Sanl5, Theorem 1.38])

Fiz any optimal mo € 11, ,, solving the Monge-Kantorovich problem of transporting p to v with
respect to a continuous cost function é: R? — Rsq. Then for all (x1,v1), (z2,y2) € support(m),
we have

c(x1,y1) + é(x2,y2) < E(1,92) + (22, Y1)

Proof of Lemma 3.4. Suppose, for a contradiction, that
6(1'17 yl) + 5(11,‘2’ Z/2) > 6(1'17 y2) + é(:E?a yl)
Fix any € > 0 satisfying
1, - - -
0<e< Z(C(zlayl) + &(x2,y2) — (a1, y2) — (w2, y1))-

Since ¢ is continuous, there exists » > 0 such that all of the following hold:

e forall x € (x1 — 7,21 +r) and for all y € (y; — r,y1 + 1), we have
&z, y) > ez, 1) — ¢,

o for all x € (v — 7,22+ ) and for all y € (y2 — r,y2 + 1), we have
¢z, y) > c(x2,y2) — ¢,

e forall x € (x1 —r,z1 +r) and for all y € (y2 — r,y2 + ), we have
&(z,y) < é(z,y2) + ¢,

e forall x € (xg —r,xzo+r) and for all y € (y; — r,y1 + ), we have

é(x,y) < e(z2,y1) + €.



Define the open squares Q; == (xj—r, x;+r)x(y;—r, y;j+r) for j € {1,2}. Since (z1,y1), (x2,y2) €
support (7o), we have mo(Q1), mo(Q2) > 0. Let mo|g, denote the restriction of the measure mo to
the open square V;. Define the Borel probability measures on @;

L |
m(Qy) '

Define the projection maps p1,pa: R? — R by p1(z,y) = x and ps(z,y) =y, and for j € {1,2}:

= for each j € {1,2}

e define yi; to be the measure on R which is the image measure of 7; under the map p1,
e define v; to be the measure on R which is the image measure of 7; under the map ps.

Fix any 0 < g9 < 3min{m(Q1),7(Q2)}. Define the product measures v; = p3 X vo and
y2 == p2 X v1. Finally, define a measure v on R? by

v =T — 80(7T1 + 7o) + 50(’71 + 72)-

It is easy to check that v € II,, ,. We now claim that we have

/Ed")/</ ¢dm,
R2 R2

contradicting the assumption that 7 is optimal. Indeed,

/Ed’]‘(’()—/ Ed"}/:&‘o </ 5d7l'1+/ édﬂ'g—/ 5d"}/1— 5d’)/2)
R2 R2 R2 R2 R2 R2

> 60((5($1,y1) — )+ (¢, y2) —€) — (E(x1,2) + &) — (E(z2,m1) — 5))

> 0. O
Lemma 3.5 ([Sanl5, Theorem 2.9])
Let h: R — Rx>q be a continuous strictly convex function. Fix any optimal mo € 11, ,, solving the

Monge-Kantorovich problem of transporting u to v with respect to the cost function ¢: R? — R>g
defined by ¢(x,y) == h(x—y). Let (x1,y1), (x2,y2) € support(mg) satisfy y1 < y2. Then x1 < x5.

Proof of Lemma 3.5. Suppose, for a contradiction, that 1 > x2. Lemma 3.4 gives us

h(z1 = 1) + h(ws — y2) < Az — y2) + h(z2 — ).
Then we have, by the strict concavity of h, we have

h(z1 — y2) + h(z2 — 1)
(tx1r —y1) + (1 — ) (w2 — y2)) + h(t(w2 — y2) + (1 — £)(z1 — 1))
< th(zr — 1) + (1 — t)h(xg — y2) + th(ze — y2) + (1 — t)ﬁ(xl — 1)
h(z1 —y1) + h(za — y2),

h(xy — 1) + h(zg —y2) <

Il
DA:

1 —T2

where t == N

m

(0,1). This strict inequality is a contradiction. O
We are now ready to complete the proof of Lemma 3.3.

Proof of Lemma 3.3. Fix any € > 0. Certainly, by Proposition 4.1, an optimal solution 7y €
I1,,, exists for the Monge-Kantorovich problem of transporting p to v with respect to the cost
function ¢.. We aim to show that 7y = mTmon-



By definition of myon as the image measure of A|(g ;) under the map y — (F, ,L_l] (y), FY (y)),
this measure mmon is the unique Borel probability measure on R? satisfying

Tmon((—00, @] x (—00,0]) = min{F}; (a), FIU(b)}  for all a,b € R.

We will show that 7y also satisfies the equality above, proving that mg = mon. Fix any a,b € R.
Then at least one of the sets

A= (—o00,a] x (b,o0) or B :=(a,c0) X (—00,b]
must have measure 0 under 7g. If this were not the case, then there would exist points
(21.1) € (~09,a] x (b,00) and  (w2,95) € (a,00) x (00,
violating Lemma 3.5. So we have

mo((—00, a] x (—o0,b]) = min{my((—o0,a] x (—oc0,b] U A), mo((—00,a] x (—oo,b] U B)}
= min{my((—o0,a] x R), mo(R x (—o0, b])}
= min{F}; (a), F 71 (b)}.

Thus 79 = Tmon- O

This completes the proof of Lemma 3.3. The proof of Theorem 3.1 is now, at long last,
complete. ]



4 Sarabande

We have used quite a few results without justifications. This section is dedicated to filling in
those gaps.

Recall that for a topological space X, we use P(X) to denote the space of all Borel probability
measures on X. Recall that we also defined

II,, ={me€ P(X x X) : 7 has marginals p and v }.

for p,v € P(X). Now, denote by C(X) the space of all continuous real-valued functions on X.
We will now show that the Monge—Kantorovich problem has always an optimal solution.

Proposition 4.1 ([Garl8, Theorem 20.2.1, Corollary 20.2.2, Theorem 20.3.1])
Let c: R? — R be lower semicontinuous, and fix p,v € P(R). Suppose that

inf{/ cdﬂ:ﬂeﬂmu}<oo.
RQ
Define

m::inf{/ cd7r:7r€H,W} and
RZ

M::sup{/Rfdu+/Rgduzf,gEC(R) and f(z) + g(y) < c(z,y) forall:v,yER}.

Then m = M, and there exists mog € 11, such that

/ cdmg=m = M.
RQ

Proof. Let us first solve the Monge-Kantorovich problem on the compact unit square [0, 1] in
the following Lemma 4.2.

Lemma 4.2 ([Garl8, Theorem 20.3.1])
Let ¢: [0,1] x [0,1] = R>q be lower semicontinuous, and fix i, € P([0,1]?). Suppose that

inf / cdr: e H,]#; < 00.
[0,1]2

=
Il
)
et
io]
—N—
i
=
~
[N
=
+
=
=
N}
(oW
A
Sk
N}
m
Q
—~~
=)
—_
=
=
I~
QL
=
—~~
8
N—
+
Q
—~
<
SN—
I
(o
—~~
8
<
N—
Y
3
g,
8
<
m
=)
M
——

Then m = M, and there exists 7o € Il 5 such that

/ é¢diig=m = M.
[0,1]2

Proof of Lemma 4.2. Firstly, observe that for all f,§ € C([0,1]) with f(x) + §(y) < é(z,y) and
for all 7 € II; 5, we have

[Qufdwr/[o,”gd”:/K)’l}Q(f(wHé(y))dﬁ(w,y) S/ éd.

[0,1]2

10



Consequently, M < . )
We now show that there exists 7y € II; 5 such that m < f[o 12 cdmg < M. Let L be the

space of all functions F: [0,1]2 — R of the form F(z,y) = f(z) + §(y) with f,§ € C([0,1]).
Then L is a linear subspace of C([0, 1]?). Observe that the map ¢: L — R defined by

f g = Fdji gdr
o(f(x)+3(y)) [O,Hf u+/[0’1]g v

is a well-defined linear functional on L which is not the zero linear functional on L, since

o(l) =1. )
Let U be the space of all continuous real-valued functions h on [0, 1]? such that

h(z,y) < é(z,y) for all z,y € [0, 1].
Observe that U satisfies all of the following:
e U CC([0,1]%),
e [ is non-empty, since —1 € U,

e U is open in C([0,1]?), where we give C(]0,1]?) the topology induced by the supremum
norm || - flo,

e U is convex,
e U N L is non-empty, since —1 € U N L,

¢ is bounded above by m on U N L, because if f(z) + §(y) e UNL and 7 € I1; 5 then

o(foy+aw) = [ (Forow) sy s [ e

[0,1]2
Let B:=sup{p(F): FeUNL} <m, and let

Lp={ f(@)+3(y) € L: p(f(2) +3(y)) = B}.
Then Lp satisfies all of the following;:
e Ly C C([0,1]%)
e Lp is non-empty, since B € Lp,
e [ is convex,

e Lp is disjoint from U, because if f(x) + §(y) € U N L then there exists f € C([0,1]) such
that

f@) +9(y) < fx)+9(y) <é(x,y) forallz,y € [0,1],

and consequently

e(f(2)+3y) = fd/l+/ Gdv < fdﬂ+/ §dv < B.
[0,1] [0,1] [0,1] [0,1]

Thus by the Hahn-Banach theorem, there exists a continuous linear functional ¢: C([0,1]%) —
R such that . . o
if i € U then ¥(h) <K::inf{¢(F) :FeLB}.

11



Observe that 1 is a non-negative linear functional on C([0, 1]?), that is,

if b > 0 then ¢(h) > 0.

Indeed, if h > 0 then we have —ah € U for all & > 0. So if we had (k) < 0 then ¢(—ah) =
—a(h) < K. But if ¢»(h) < 0 then this cannot hold for all a > 0 .
As 1 # 0, we have ¥(1) > 0. Thus if we set 0 = %, then 0 is a non-negative linear

functional on C([0, 1]?) with 6(1) = 1. Riesz’s representation theorem thus yields the existence
of some 7y € P([0, 1]?) such that

O(F) = / F(z,y)drg(z,y) for all F e C([0,1]?).
[0,1]2

We claim that this 7 is our desired transport plan satisfying m < f[o 12 ¢dig < M.
First, let us show that 7o € II; 5. Let

A=inf{0(F): FeLp}.
Note that if 4 € U then (h) < A. Observe that if ) € L satisfies ¢(Fp) = 0, then
¢(B+aFy) =B foral acR,
and so B+ aFy € Lp for all a € R, meaning that
B+ af(Fy) =0(B+aFy) > A forall a €R,
from which it follows that 6(Fy) = 0 and hence
B > A. (4.1)

Now for any F € L, we can write

for some Fy € L with ¢(Fy) = 0. Hence
0(F) = 0(p(F) + Fo) = o(F) + 0(Fp) = o(F).
In other words, 6 extends ¢ from L to all of C([0,1])2. Thus both of the following hold:

e if f € C([0,1]) then

f(x) diolz, y) = 0(f(2) = p(f(x)) = / f(x) dji(a),
[0,1]2 [0,1]

e if g € C([0,1]) then

/ 3(y) dio(zy) = 6(3(w)) = o(F(w)) = / 3(y) di(y).
[0,1)2 [0,1]

Therefore 7o € 115 5.

12



Finally, we approximate the cost function ¢ from below by a sequence of non-negative func-
tions hy, ha, hs, ... € U with h,, 7 ¢ pointwise as n — oo [Garl8, Theorem 4.2.9]. Then

m < / ¢d, by the definition of m,
[0,1]

= lim h., 7o, by the monotone convergence theorem,

§sup{/ ﬁdﬁoszEU}, since hi,ho, ho,... € U,

[0,1]2
= sup { 9(l~z) chelU }, since 7o represents 6,
<A, by the definition of A,
< B, from Equation (4.1),
:sup{go(ﬁ’) :FGUﬂL}, by the definition of B,
< M, by the definitions of M, U, and L.
Therefore f[0,1]2 ¢dig = m = M, as desired. O]

We now turn to proving Proposition 4.1, solving the Monge-Kantorovich problem on R.

Recall that
m::inf{/ CdﬂZWEH“’V} and
RQ

M::sup{/Rfd,u—F/Rgdyzf,gEC(R) andf+g§c},

and we aim to show that m = M. Arguing similarly as in the start of the proof of Lemma 4.2,
we obtain M < m.

Now embed R? into the compact unit square [0, 1]? by identifying R? with the open set (0,1)?
via an obvious orientation-preserving contracting homeomorphism h: R? — (0,1)2. Define
¢: [0,1]? = Rxq by

i, y) = {c(h_l(:c,y)) if both x,y € (0,1),
0 else,
and define fi,7 € P([0,1]) to be the respective image measures of y and v under the map h.
Observe that ¢ is lower semicontinuous. Then Lemma 4.2 yields the existence of some 7y € II; 5
satisfying

/ ¢dfg = sup / fdu+/ Ggdo: f,geBL([0,1])) and f+§<¢ p.
[0,1]2 [0,1] [0,1]

Now note that

70([0,1]*\ (0,1)%) < a({0,1}) + 2({0,1}) = u({0,1}) + v({0,1}) = 0.

Hence, letting 7o|(g,1)2 be the restriction of 7 to (0, 1)?, we may define myp € P(R?) to be the
image measure of 7?0\(071)2 under the map h~!. It is easy to check that we indeed have 7 € I, .,
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and that

M:sup{/fdu—#/gdz/:f,gEBL(]R) and f+g<c
R R

Zsup{ fdﬂ—{—/ gdi: f,geBL([0,1]) and f+ g <& }
[0,1] [0,1]

cdm

| Vv
T~

7]2

CdTr()

\Y
3

This proves that fRZ’ cdmg = m = M, and we are done with the proof of Proposition 4.1. O

In the definition of the Wasserstein metric (Definition 2.1), we defined the space

Pl(R)::{ueP /mdu <oo}

and we defined the Wasserstein metric Wy : P;(R) x P;(R) — R>q by

Wi(p,v) == inf {/ |z —yldm(z,y) :me1l,, }
R2

Proposition 4.1 shows that we have

Wlm,u):sup{Afdu+Agdu:f,geo<R> and £(z) + g(y) < |& — y] for all x,yeR}

for all u,v € P;(R). In particular, by considering the cases
e f(r) == and g(y) = —y, or
e f(z) = —z and g(y) =,

we obtain

Wi, v) > /R wdu(z) — /R ydu(y)|,

which proves Theorem 2.2, stating that the Wasserstein distance between p and v is at least
the distance between their means. In fact, we can do better. Denote by Lip(R) the space of all
Lipschitz continuous functions on R. For h € Lip(R), the Lipschitz constant of h is defined to

be h(@) - h)
N
“h“Lip = sup 7;14'

z,y€R, |z —y|
TFy

Proposition 4.3 ([Garl8, Corollary 21.2.3])
For p,v € Pi(R) we have

Wi, v) > sup {

hdp — / hdv|:h € Lip(R) and ||h|/Lip < 1 } .
R R

Proof. This is a corollary of Proposition 4.1. O

The inequality in Proposition 4.3 can actually be proven to be an equality [Garl8, Corollary
21.2.3], but we will not need this fact in this document.

We conclude this section by showing that the Wasserstein metric is indeed a metric on
P;(R), justifying its name.
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Proposition 4.4 ([Garl8, Theorem 21.1.2] [Vil09, Chapter 6])
For all p,v € Pi(R), the value Wi (u,v) is finite. Furthermore, Wi: Pi(R) x P;(R) — R>¢ is a
metric, that is,

o for all p,v € P(R), we have
Wl(/*‘v V) = Wl(V,,U),

o for all u,v € Pi(R), we have

Wi(p,v) =0 if and only if p = v,

o W1 satisfies the triangle inequality, that is, for all p,v,§ € P1(R), we have

Wl(u:f) < Wl(,uay) + Wl(”:f)'

Proof. Let us first show that Wi (u,v) is finite when p, v € P;(R). Indeed, the product measure
m = p x v €Il , satisfies

Wino) < [ o= yldn(z.y)

:/R/R|x—y|d#(x)d7/(y)

< /R /R (2] + ly1) dps() do(y)

:/R|x’d,u(x)+/R‘y|dV(y)
< 00

We now turn to proving that Wi is a metric on P;(R). The reader might wish to note
that this is an immediate corollary of Theorem 3.1. We present, in the remainder of this proof,
a different proof which more readily generalises to Wasserstein metrics defined over arbitrary
Polish spaces.

Fix p,v € Pi(R). It is evident from the definition of Wj that Wi (u,v) = Wi(v, ). Next,
if 4 = v then clearly the transport plan my € II,, which is the image measure of ; under the
function R > = + (x,z) € R? satisfies

0<Wa(ur) < [ o= yldmo(e,y) =
R
On the other hand, if y # v, then there exists a compact interval [a,b] C R such that

1([a, b]) # v([a,b]).
Supposing, without loss of generality, that u([a,b]) > v([a,b]), we let

1
€= 5('“([@’ b)) — y([a,b])) > 0.
Now, there exists § > 0 such that

v((a—9,b+6)) <v([a,b]) +e.

15



Consequently, for any = € II,, ,, we have

[l lanten) = [ 2 — yl dr(a,y)
R2 [a,b]x (R\(a—5,b+))

> ddn(z,y)

- /[a,b]x(]R\(a—(S,IH—J))

=5 m([a,b] x (R\ (a—6,b+9)))

=45 (W([a, b x R) — 7([a,b] x (a— 5,b+5))>
5 (ﬂ([a,b] xR) — 7 (R x (a_a,b+5)))

=6 (ula,b]) = v((a—d,0+10)))
5

Hence Wy (p,v) > de > 0.

Finally, we show that W) satisfies the triangle inequality. Fix u,v,& € Pi(R). As the
Monge-Kantorovich problem always has a solution (see Proposition 4.1), there exist 7 € II,, ,
and 7o € II, ¢ such that

Wi(p,v) = /R2 |z —yldm(z,y) and W;i(v, &) = /RZ |z — y|dma(z, y).

We interrupt the proof with the following technical Lemma 4.5 to obtain a measure v €
P(R3) which “glues” together the transport plans m; and 7.

Lemma 4.5 (Gluing Lemma [Aki22] [Garl8, Theorem 16.1.1])
Define the projection maps p12,p2,3,01,3: R3 — R? by

pij (w1, 02, 23) = (24, T5).

Then there exists v € P(R3) such that, when we define Vi,; to be the image measure of v under
pi,j, we obtain
71,2 = T1 and 72,3 = T2.

Proof of Lemma 4.5. By disintegration of measures [Aki22] [Garl8, Theorem 16.10.1], there
exists a collection of measures {71 (:|y)}yer € P(R) such that

m(X xY) = /Ym(X|y) dv(y) for all Borel X,Y C R.
Similarly, there exists a collection of measures {ma(:|y)}yecr C P(R) such that

m(Y x Z) = /Y7T2(Y|y) dv(y) for all Borel Y, Z C R.
Then the unique measure v € P(R?) satisfying

V(X XY xZ)= / m1(X|y)ma(Z|y) dv(y) for all Borel X, Y, Z C R
Y

works. O
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Returning to the proof of the triangle inequality in Proposition 4.4, we take the measure ~
obtained from Lemma 4.5. It is easy to check that 13 € II, . We thus obtain

Wi, &) < /R2 |z — 2| dy13(2, 2)
— / 2 — 2 dy(z, . 2)
RS
< / o — yl vy, 2) + / ly— 2| dy(z,y, 2)
R3 R3
:/ |l‘—y|d71,2($,y)+/ ly — z|dv23(y, 2)
R2 R2

:/ |gc—y|d771(x,y)+/ ly — z| dma(y, 2)
R2 R2
= Wi(p,v) + Wi(v,§).

This completes the proof of Proposition 4.4, showing that W; is a metric on P;(R). O
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5 Bourrée

Theorem 5.1 ([Eva24])
Let p,v € Pi(R) have probability density functions f,g € C' respectively. Then there exists
C > 0 such that

/ If(w)—g(x)ldxéc‘\/ ( / <\f'<x>|+\g'<x>|>dx> Wi(nv).

Proof. First, recall that

[ 1@ - gtz < s ( [ s@ptaas- [ g(w)@(x)dx),
lolloo <1

where C2° is the space of all smooth functions with compact support, and ||-||oc is the supremum
norm.

Fix any smooth positive function 77: R — R with compact support in the open unit interval
(0,1) and [ n(x)dx = 1. For any ¢ € C° with [¢|l < 1, the convolution

(i) = [ wlomte =) dy = [ ela =)y
is differentiable, and (¢ *n)’ = ¢ 1. Hence the Lipschitz constant || * n||Lip of ¢ * n satisfiies

le s nllLip < [l *7'lloe < llelloolln’llzy < lIn'llzr-

For € > 0, define 7.: R — R by n.(x) := n(ex). Note that ||¢ *nellLip < 17| 11-
Now,

/ f(z)p(x)dx — / g(x)p(z)de =T+ 11 + 111,
R R
where
U= [ faota)do =z [ f@)p <)) de.
e [ fa)osm)(a)do—c [ gla)(one)(e)da, and
M= [ gla)(een)(@)de — [ glo)pla)do.

R

Note that ¢ * 1, is Lipschitz, so Proposition 4.3 gives us

1] < ellp s nel|Lip Wi (1, v) < el s Wi (p, v).

Next, using the substitution z := z — y, we have

1= /R F@)p(a) dz — e /R F(@) (%) () da

— /Rf(x)@(w) dr — s/Rf(x) (/R ol — y)ne(y) dy) da
- /Rf(xm(x) dr — E/R/Rf(x)w(fﬂ —y)ne(y) dy dz

B /Rf(x)so(x) do — 5/R/Rf(z +y)p(2)ne(y) dy d=.
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1

Since [ 7e(y) dy = 2, we multiply the first term with € [ n-(y) dy to get

1—5//f ey dydx—s//f:c+y (y) dy da
_5// @+ 9)e(@)ne(y) dy da

—e /R /R ( [ 1 dz) (@) (y) dy da
:—5//</lf'a:+ty ydt) o(@)ne(y) dy da

:—s/ //f 2+ ty) - o(x) -y - n(y) dz dy dt.

Making the substitution & := x + ty on the innermost integral, we obtain

=—6/ //f §—ty) -y ne(y)d§dydt,

m<s/ |17 Il -t - ne(w) agayat
_s</R|f £|d£) (/R |y|ne(y)dy>
:5( / |f’(€)|d£> ( / |y|n<ey)dy>.

The substitution g := ey finally gives us

m= ([ roa) ([lamma).
m <t/ |g’<x>|dw) ([ ity as).

Therefore, from [, f(x)e(x) dx — [; g(x)e(x) dz < |I| + [II| + [III|, we obtain

L7 = g@las < 2 ([l a) ( L1 @1+ 1 @) ) + el a3

When we fix constants A, B > 0, the value of € > 0 which minimises the function & > %A +eB
ise= \/% where we attain the minimum value of 2/ AB. Therefore

i |d$<2\/H?7||L1 / iy dy) (/ e )|+|g'<x>|)dx)wl<u,u>,

as desired, proving Theorem 5.1. O

hence

Similarly,
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6 Gigue

We now define Boltzmann’s H functional, which represents the relative entropy® between two
Borel probability measures on R.

Definition 6.1 (Relative entropy, [Vil09, Chapter 22])
Let p,v € P(R). If the Radon—Nikodym derivative p = % exists, we define

() = [ plog(p)

Otherwise we define H(p|v) = oo.

Observe that always have H(u|v) > 0. To see this, first note that prdV = fR dpu = 1.
Consequently,

/pbﬁmdvz/@ﬂ%pp+ndvzo
R R

due to the fact that zlog(x) —x+1 > 0 for all z > 0. We are thus justified in taking the square
root \/H (u|v), and we will do so in Theorem 6.2.

Theorem 6.2 ([Vil09, Definition 22.1, Theorem 22.10])
Let v € Pi(R). Suppose there exists C > 0 such that for all Borel sets A C R,

if v(A) > —, then for all r > 0 we have v(A") > 1 — e,

DN |

where A" == {x € R : inf{|z —y|:y € A} <r}. Then there exists a constant K > 0 such
that for all p € Pi(R) which is absolutely continuous with respect to v, we have

Wi(p,v) < Ky/H(plv).

Proof. For a signed measure 7, let n = 7 —n~ be the Jordan decomposition of 1, so n and
1~ are non-negative measures. We define the absolute variation of n to be the measure

nl =n"+n".
We connect the absolute variation to the Wasserstein distance in the following Lemma 6.3.

Lemma 6.3 ([Vil09, Theorem 6.15])
For all i, & € Pi(R) and all xo € R, we have

Wi €) < /R\x — ol dlpt — €] (x).

Proof of Lemma 6.3. Define m to be the image measure of min{u,&} under the map R >
x +— (z,7) € R?. Define 7 to be the product measure of (u — &)™ and (u — &), and define
a=(p—&FTR) = (u— &)~ (R). Then define 7 € P(R?) by

T =T + —7o.
a

®The letter H which appears here is the Greek H (capital 1), rather than the Latin H (capital h).
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Then m € 11, ¢, and so

/ & — y|dr(z,y)
— |a; — y|dma(x,y)
//|:c—y|dﬂ ) (z)d(p—€)~(y)
o[ [l =al =9 @ -ow)
+l//|x0_y|d<ﬂ—g>+(x>dw—£>—(y>
/|x—x0\du £ /\xo—yldu ()
=/R|x—960\d((/ﬁ—§) + (1= €)7)(x)
= [l =zl dle = €l(o). -

Let us now turn to proving Theorem 6.2. We first prove the following Lemma 6.4, which
establishes the finiteness of an integral we will use in the final proof of Theorem 6.2.

Lemma 6.4 ([Vil09, Theorem 22.10])
There exist o € R and k > 0 such that the integral

/ ek(a=w0)* dv(x)
R

is finite.

Proof of Lemma 6.4. Fix any compact set A C R such that v(A4) > % Fix any zg € A, and
let R :=max{|r —y|:x,y € A} be the diameter of A. Let d(-,A): R — R>¢ be the distance
function from A, defined by

d(x,A) :==min{ |z —y|:y € A}.

Then d(-, A) has median 0, that is,

v({zeR:d(z,A)>0}) > and v({zeR:d(z,A)<0})>-.

Ml'—‘
[\Dl'—‘

By the hypothesis of Theorem 6.2, for all » > 0 and for all 7 € (0,7), we have
v({z €eR:d(z,A) <0})>1- e O,

Consequently,

v({zeR:d(z,A) >r}) < e 07,
As the above inequality holds for all 7 € (0,7), we obtain
v{reR:|z—z| >R+7r}) <v({zeR:d(z,A) >r}) < e Cr*

for all » > 0.
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Now choose any 0 < k < C. Then we would have

|x—xo|
/ ek(z—w0)? dv(z) = / / 2%kseks ds dv(z) +1
R RJO
o0 2
= / / 2hsers 1 g<|p—go|dsdv(z) + 1
/ /2]{786 1 g<|pmgo| drv(z) ds + 1

_/ 2k seks” v({z €eR: |z —x0| > s})ds+ 1
0

R
= / 2k:sek52u({x ER: |z — x| > s})ds
0

+/ kaeksgl/({x ER: |z — x| > s})ds
R

+1

R 00
< / 2kseks® ds + / kseks’ e=Cls=R)? 45 +1
0 R

R [e’e)
= / 2kseks” ds + ke CF? / se—(C—R)s*+2CRs +1
0 R

< 0. O

Returning to the proof of Theorem 6.2, let us take g € R and k£ > 0 from the conclusion of
Lemma 6.4. By virtue of Lemma 6.3, it suffices to show that

/Rr:c—xomm—w ) < K/H{ul)

for some constant K > 0.
As u is absolutely continuous with respect to v, the Radon—Nikodym derivative p = Cdi—‘lf
exists. Define p: R — R by p(x) := p(x) — 1, and define h: [—-1,00) — R>¢ by

(I+s)log(l+s)—s ifs>—1,
h(s) = .
1 if s =—1.

Then we can rewrite H(u|v) as
Hilv) = [ (hop)a

Now, Taylor expanding h around 0 with integral remainder gives

h(s):/ss_t t—s2/11_tdt
o L+t o 1+1s

for s > 0, since h(0) = h’'(0) = 0. Hence

// l—l—tpl_t) dt dv(z),

and so by the Cauchy—Schwarz inequality,

H(ul|v) // (1 —t)(z — 20)*(1 + tp(z)) dt dv(x)

(// (1~ ) Vilz — 0] - [5()| dt do(z >>
=1 ([ VBle - aal - o) avte ))
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Thus we obtain
[ Ve = aolal = vi@) = [ VEle a0l - [5@)] dv(e) < Ko/ TG

where

K, = 2\//R /01 k(1 —t)(x — x0)%(1 + tp(x)) dt dv(z)
_ 2\//R /01 k(1L - 0)( — 20)? dt dv() + /R/Ol k(1 — 1) (2 — 20)2p(z) dt dv(z)
_ 2\// /1 k(1= £)2(x — 20)2 dt d(z) + /R /01 kt(1 — ) — 0)2(1 + p(x)) dt du(z)
_2\/ /m—mo2dy /kx—mozdu()

The only trouble now is to bound the term [;(z —x0)? du(z) from above in terms of H (u|v).
To do this, we use the following Lemma 6.5.

Lemma 6.5 ([Vil09, Equation 22.7, Equation 22.21] [Led01, Equation 5.13])
We have

/ k(x — x0)? du(z) < H(u|v) + log (/ ehla—w0)? dl/(m)) .

R R

Proof of Lemma 6.5. We will use the fact that for all s,z € R with s > 0 we have
st < slog(s) — s+ €',

which can be obtained from a generalisation of Young’s inequality [MN11, Equation 1.3]. Then
/Rk(a: —20)*du(z) = /Rp(a:)k(:c — 20)?dv(z)
< /R (ple) tos(o()) — plar) + =00 dw(a)
~ H(uy) -1+ /R K@=20)? gy ()
H(plv) + /R ekE=20) 4y (). O

Returning to the proof of Theorem 6.2, we obtain

K, <2\/ / (x — x0)2dv(z) + H(u| )+ log (/ e’f($—$0)2dy(x))

By Jensen’s inequality, as log is concave,

/ k(x —x0)?dv(z) = / log (ek(‘v_zOP) dv(z) > log (/ ek(z=0)* dy(w)) . (6.1)
R R R
It follows that
K, <2 1H(M]V) - 1log / ek(z=20)* dy(x) |,
6 2 .
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whence

[ VEle =zl dln i) < \/ 2 (H ()2 + 28 () og ( [ ek du<x>). (6.2)

On the other hand, due to the Cauchy-Schwarz inequality and the inequality |¢| <t + 2 for
t € [-1,00), we have

/R VElz — zo| dlu — v|(z)
_ /R Ve — 20 - |p(x)| dv(z)

< \/ JCRESEE du<x>\/ [ @lav)
< \/ | K@= aopp@ avia) + [ ke —xo>2du<x>\/ | sayavta) + [ av
- \//Rk‘(:v—mo)Qdu(m)+/Rk(z—:vo)2du(m)\//Rdu+/Rdu

- \/ [ ko= 202 dute) + [ (o= )2 dv(a) x V2.
R R

Applying Lemma 6.5 and Equation (6.1) to the inequality above yields

[ VHe — a0l dlu— @) < \/wa) #2105 ([ et avie)) < Ve (03
R R
Combining Equation (6.2) and Equation (6.3), we obtain

[ Jo = auldl = vi(a)
R
< % min {\/ %(H(,uh/))? +2H () log ( /R oh(o—20)? dy(az)),

\/ 2H (u|v) + 4log ( /R ek(z—w0)? du(w)) }

Recall that [ ek@=20)* 4y (z) is finite, due to Lemma 6.4.
Finally, for any fixed a1, as, b1,b2 € R with ai,b; > 0, there exists L > 0 such that

min{a;t® + ast, byt + by} < Lt for all t > 0.

Consequently, there exists K > 0 such that

/R & — 2| dljs — v(z) < K/H{alD).

This, together with Lemma 6.3, completes the proof of Theorem 6.2. U
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