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1 Introduction

In light of the independence of the continuum hypothesis, a mystifying realm manifests in the
crevice which divides ℵ1 and 2ℵ0 . Explorers trained in the school of ZFC struggle to obtain a
firm grasp on its inhabitants; they came here searching for answers, only to be teased away.
Some strongly believe we should seal the gap shut to rid ourselves of any worries. Some suggest
installing a “Danger! Keep clear!” sign to ward off passers-by. Some arm themselves with
model theory and forcing for a second expedition.

We will take a guided tour through the landscape home to the cardinal characteristics of
the continuum. We have a map, Cichoń’s diagram, carefully crafted by the brave explorers of
the past to aid us in our journey and to keep us away from dangerous waters. However, a new1

cardinal has been brought to the world’s attention — the rearrangement number. There are still
unanswered questions about the nature of this cardinal; we are still unsure about its position
in relation to Cichoń’s diagram. This should add some spice to our journey...

1.1 ZFC Set Theory

We will subscribe to the ZFC school of thought under first-order logic. The list of axioms of set
theory by Zermelo and Fraenkel, together with the axiom of choice, will be our foundational
religious beliefs. Furthermore, the version of ZFC which we will adopt will insist that everything
in the domain of the language of ZFC is a set. In the language of first-order logic, we have a
primitive two-place identity predicate symbol = which we will use to denote equality. So we
write x = y to mean “the sets x and y are equal”. The language of set theory consists of another
primitive two-place predicate symbol ∈, which we use to denote set membership. That is, we
write x ∈ y to mean “the set x is an element of the set y”. We will immediately start using all
the usual two-place predicate symbols ∕=, /∈, ⊆, ⊂ with their usual definitions in mathematics.

For brevity, though at the risk of losing rigour, we informally list axioms of ZFC [18, Chapter
1] [22, Section 2.10, Section 7.5, Section 8.1] [19, Section 9] below without completely rebuilding
elementary ZFC set theory from the ground up.

Axiom 1.1.1 (Extensionality). Let A and B be sets. If A is a subset of B, and B is a subset
of A, then A = B.

Axiom 1.1.2 (Empty Set). There exists a set ∅ with no elements.

Axiom Schema 1.1.3 (Separation). Let ϕ(x,A, a1, . . . , an) be a formula whose free variables
are among x,A, a1, . . . , an. Fix any sets A, a1, . . . , an. Then there exists a set

{x ∈ A : ϕ(x,A, a1, . . . , an) }

consisting of all the elements x ∈ A for which ϕ(x,A, a1, . . . , an) is true, and nothing else.

Axiom 1.1.4 (Pairing). Let A and B be sets. Then there exists a set {A,B} whose elements
are precisely A, B, and nothing else.

Axiom 1.1.5 (Union). Let A be a set. Then there exists a set
󰁖
A consisting of all the elements

of the sets which are elements of A, and nothing else.

Axiom 1.1.6 (Power Set). Let A be a set. Then there exists a set P(A) consisting of all the
subsets of A, and nothing else.

Axiom 1.1.7 (Infinity). There exists a set A such that ∅ ∈ A, and for every x ∈ A we also
have x ∪ {x} ∈ A.

1Relatively new [15] [3].
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Axiom Schema 1.1.8 (Replacement). Let ϕ(x, y,A, a1, . . . , an) be a formula whose free vari-
ables are among x, y,A, a1, . . . , an. Fix any sets A, a1, . . . , an. Suppose the following holds:

for all x ∈ A there exists a unique y such that ϕ(x, y,A, a1, . . . , an) is true.

Then there exists a set

{ y : ϕ(x, y,A, a1, . . . , an) is true for some x ∈ A }

consisting of all the sets y for which there exists some x ∈ A such that ϕ(x, y,A, a1, . . . , an) is
true, and nothing else.

Axiom 1.1.9 (Foundation). Let A be a non-empty set. Then there exists some x ∈ A such
that

for every y ∈ x we have y /∈ A.

Axiom 1.1.10 (Choice). Let A be a set of non-empty sets. Then there exists a choice function
f : A →

󰁖
A such that

for all x ∈ A we have f(x) ∈ x.

These axioms allow the development of most of “usual” mathematics. From here onwards,
we will use tools from basic set theory without worry, including (but not limited to) intersec-
tions, functions, bijections, countability, and the real numbers. One piece of notation which is
important to note is that we will use N to denote the set of all natural numbers including 0.

1.2 Ordinals, Cardinals, and Cardinality

Perhaps the most important idea in all of set theory is using a bijection to say that two sets
have the same “size”. Given two sets A and B, we say that A and B “have the same number
of elements” if there exists a bijection f : A → B. We have the following classical result to
establish the existence of bijections.

Theorem 1.2.1 (Cantor–Bernstein Theorem [22, Theorem 18 in Section 4.1], [16, Theorem
3.2]). Let A and B be sets. Suppose there exists an injection f : A → B, and suppose there
exists another injection g : B → A. Then there exists a bijection h : A → B.

We can also “flip” injections and surjections due to the following theorem.

Theorem 1.2.2 ([19, Theorem 2.7.25, Theorem 2.7.27]). Let A and B be sets.

(1) If A is non-empty and there exists an injection f : A → B, then there exists a surjection
g : B → A.

(2) If there exists a surjection f : A → B, then there exists an injection g : B → A.

Remark. We need the axiom of choice to establish (2).

Furthermore, the power set axiom allows us to keep obtaining larger and larger sets. This
is demonstrated by Cantor’s theorem below.

Theorem 1.2.3 (Cantor’s Theorem, [16, Theorem 3.1]). Let A be a set. Then there does not
exist a bijection f : A → P(A). More specifically, there does not exist a surjection f : A →
P(A).
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In particular, the set P(N) is uncountable. It can also be shown that R can be placed in
bijection with P(N), and so R is also uncountable.

Bijections, while giving us a useful notion of two sets having the “same size”, do not allow
us to say what the size actually is. We can only compare it to other sets, rather than being able
to quantify the size of the sets. To do this, we develop ordinal and cardinal numbers. Roughly
speaking, ordinals are inspired from the numbers “first”, “second”, “third”, etc. denoting
positions in some ordering, and cardinals are inspired from the numbers “one”, “two”, “three”,
etc. denoting sizes of sets. They allow us to generalise these notions to talk about infinities.

Definition 1.2.4 (Ordinals and Cardinals, [16, Definition 2.10]). A set α is an ordinal if both
of the following hold:

(1) for all β ∈ α, we have β ⊆ α,

(2) for any A ⊆ α with A ∕= ∅, there exists β ∈ A such that

for all γ ∈ A, either β ∈ γ or β = γ.

An ordinal α is said to be a successor ordinal if α = β ∪ {β} for some ordinal β, and α is said
to be a limit ordinal if α ∕= ∅ and α is not a successor ordinal.

An ordinal κ is a cardinal if for every α ∈ κ, there does not exist a bijection f : α → κ.

Remark. A set satisfying (1) is said to be transitive, and a set satisfying (2) is said to be
well-ordered by ∈.

The sets 0 := ∅, 1 := {0}, 2 := {0, 1}, 3 := {0, 1, 2}, . . . are all cardinal numbers. Further-
more, ω := {0, 1, 2, . . . } and ω1 := {α : α is a countable ordinal} are also cardinals, and ω1 is
uncountable.

For cardinals κ and λ, exactly one of the following holds [16, Lemma 2.11]:

• κ = λ,

• κ ∈ λ,

• λ ∈ κ.

We thus write κ < λ to mean “κ ∈ λ”, and κ ≤ λ to mean “κ < λ or κ = λ”. The following
theorem, which is a consequence of the axiom of choice, justifies using cardinals to denote “size”.

Theorem 1.2.5 ([16, Theorem 5.1]). For any set X, there exists a unique cardinal κ such that
there exists a bijection

f : X → κ.

Hence for any set X, we write |X| = κ where κ is the unique cardinal such that there exists
a bijection f : X → κ. We may now define cardinal arithmetic.

Definition 1.2.6 ([16, Equation 3.3]). Let κ and λ be cardinals. Let X and Y be disjoint sets
with |X| = κ and |Y | = λ. We define

κ+ λ := |X ∪ Y |
κ · λ := |X × Y |
κλ :=

󰀏󰀏XY
󰀏󰀏

where X×Y denotes the Cartesian product of X and Y , and XY denotes the set of all functions
f : Y → X.
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We already have notations for finite cardinals, namely the natural numbers 0, 1, 2, . . . . To
talk about infinite cardinals, we appeal to transfinite recursion [16, Theorem 2.14 and Theorem
2.15] to introduce ℵ-numbers.

Definition 1.2.7 (ℵ numbers, [16, Section 3]). Let α be an ordinal. We define

ℵα :=

󰀻
󰁁󰀿

󰁁󰀽

ω if α = 0,

min{γ : γ is an ordinal with ℵβ < γ} if α is a sucessor ordinal with α = β ∪ {β},
󰁖

γ<α ℵγ if α > 0 and α is a limit ordinal,

where the minimum is taken with respect to the well-ordering induced by ∈ on the class of all
ordinals, and ω is the first countably infinite ordinal.

Each ℵ-number is a cardinal. In particular, we have ℵ1 = ω1, and 2ℵ0 = |P(N)| = |R|.

Theorem 1.2.8 ([16, Theorem 3.5]). For all ordinals α, we have ℵα · ℵα = ℵα.

As a corollary of Theorem 1.2.8, we have ℵℵ0
0 = 2ℵ0 . This will be useful later when working

with the set NN of functions f : N → N.

1.3 The Continuum Hypothesis

Cantor showed, using his famous diagonal argument [7], that no bijection can be established
between the set N of natural numbers and the set R of real numbers. In particular, he showed
that |N| < |R|, that is, no injection from N to R can be a surjection. A natural question then
arises: is there a set whose cardinality lies strictly between |N| and |R|? Upon first attempts, it
seems difficult to construct a set X ⊆ R with the property |N| < |X| < |R|.

• Any open interval in R can be placed in bijection with R, so we should require X to not
have any “region of continuity”.

• The set Q of rational numbers is bijective to N, and the set R \ Q of irrational numbers
is bijective to R.

• The Cantor set, obtained by iteratively removing middle-thirds from the unit interval
[0, 1], has the same cardinality as R.

• The Vitali set, which is an example of a non-Lebesgue-measurable set constructed using
the axiom of choice, also has the same cardinality as R.

Perhaps such a setX does not exist? Despite not being able to find a proof, Cantor believed that
such a set X could not exist [9, pp. 134–137]. Cantor’s claim is now known as the continuum
hypothesis (CH).

Claim (The Continuum Hypothesis (CH), [6, Section 1.1]). There does not exist a set X such
that ℵ0 < |X| < 2ℵ0. In particular, ℵ1 = 2ℵ0.

Two significant results in model theory followed, due to Kurt Gödel and Paul Cohen.

Theorem 1.3.1 ([14], [18, Corollary 4.9]). If ZFC is consistent, then ZFC+CH is also consistent.

Theorem 1.3.2 ([8], [18, Corollary 5.15]). If ZFC is consistent, then ZFC + ¬CH is also con-
sistent.
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We will continue the rest of this essay adopting the position of relaxing the continuum
hypothesis, but not negating it. That is, we will explore cardinals κ for which we can prove
that ℵ1 ≤ κ ≤ 2ℵ0 , but not prove equality. Such cardinals κ are called cardinal characteristics
of the continuum [2].

Cichoń’s diagram [1, Section 2.1], illustrated in Figure 1, consists of ten such cardinals with
no further inequalities provable between them in ZFC, where an arrow κ λ denotes the
inequality κ ≤ λ between cardinals κ and λ. At this point, none of the cardinals are supposed
to mean anything to the reader. Figure 1 is simply a map of the journey we are about to
embark on in the next twenty or so pages. If the continuum hypothesis is adopted, then the
entire diagram collapses. Viewing it only from the lens of ZFC, however, allows the diagram to
expand.

ℵ1

cov(L)

add(L)

non(L)

cof(L)

2ℵ0

add(M)

cov(M)non(M)

cof(M)

b

d

Figure 1: Cichoń’s Diagram [2, End of Section 5].

In 2015, Michael Hardy asked the question “How many rearrangements must fail to alter
the value of a sum before you conclude that none do?” on MathOverflow [15]. Answers to this
question eventually turned into a research paper [3] which introduced a new cardinal character-
istic of the continuum, the rearrangement number rr. After exploring the provable inequalities
in Cichoń’s diagram, we will explore where rr lies in relation to Cichoń’s diagram.

6



2 Small Subsets of the Real Line

In view of the independence of the continuum hypothesis from ZFC, we wish to search for
cardinals α for which there exist models of ZFC such that ℵ0 < α < 2ℵ0 in that model. It is,
however, fruitless to simply search for ℵ-numbers which satisfy this inequality, as it is consistent
with ZFC that 2ℵ0 equals any of the following cardinals:

ℵ1, ℵ2, ℵ3, ℵω+1, ℵω1 ,

among many other ℵ numbers [10, Theorem 1, Theorem 2] [21, Theorem 1].2

Following the näıve first attempts in Section 1.3 to construct a set whose cardinality lies
strictly between ℵ0 and 2ℵ0 , we are motivated to look for “small” subsets of R and use them to
build sets with our desired cardinality property. As a trivial example, consider the cardinal

α := min{ |A| : A ⊆ R and A is uncountable }.

In this case, we start from the notion that countable sets are “small”, and we then take α to
be the smallest cardinality of any set which is “not small”. Certainly, there are models of ZFC
where ℵ0 < α < 2ℵ0 . Indeed, by definition, we would have α = ℵ1. However this hardly an
interesting example.

2.1 Ideals

We begin by generalising the notion of a “small” set. A “small” set could be a countable set, or
a meagre set, or a set with measure zero [17, Section 8.A], among many other possible notions.
We call a collection of “small” sets, whatever our definition of “small” is, an ideal, and we
require several properties which agree with our intuitive ideas of a set being “small”.

Definition 2.1.1 (Ideals, [16, Definition 7.1], [6, Section 1.1], [1, Definition 1.3.1]). Let X be
a set and I ⊆ P(X) be a collection of subsets of X. We say I is an ideal of X if all of the
following four properties hold:

(1) ∅ ∈ I,

(2) if A ∈ I and B ⊆ A, then B ∈ I,

(3) if A,B ∈ I, then A ∪B ∈ I,

(4) for all x ∈ X, we have {x} ∈ I.3

We say I is a proper ideal on X if I satisfies (1), (2), (3), (4) above, and also satisfies

(5) X /∈ I.4

We also say I is a σ-ideal on X if I satisfies (1), (2), (3), (4) above, and also satisfies

(6) if {An}n∈N ⊆ I, then
󰁖

n∈NAn ∈ I.

Finally, we say I is a proper σ-ideal on X if I satisfies (1), (2), (3), (4), (5), and (6) above.

2The equality 2ℵ0 = ℵω, however, is inconsistent with ZFC because ℵω has countable cofinality [10].
3The requirement of ideals containing all singleton subsets may sometimes be omitted in some texts, as in

Set Theory by Thomas Jech [16, Definition 7.1] and Classical Descriptive Set Theory by Alexander Kechris
[17, Section 8.A]. However, the ideals we are concerned with will always have this property. For example,
in Definition 2.1.3, the cardinal cov(I) would not be well-defined without this requirement, and the cardinal
non(I) would trivially equal 1 if this requirement is not met.

4Some texts, for example Set Theory by Thomas Jech [16, Definition 7.1] and The Structure of the Real Line
by Lev Bukovský [6, Section 1.1], bake this requirement X /∈ I into the definition of an ideal, omitting the need
for the term “proper ideal”.
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If one were to describe an ideal I, there is a certain redundancy in simply listing out all the
elements of I. It is “redundant” in the sense that, if A ∈ I and B ⊆ A, then Definition 2.1.1
already requires that B ∈ I, and so it would be redundant to further specify that B ∈ I after
one has already said that A ∈ I. A basis B for an ideal allows one to generate the entire ideal
by taking all the subsets of the elements of B.

Definition 2.1.2 (Basis for an Ideal, [2, Definition 2.7]). Let I be an ideal on a set X. A
collection B ⊆ I is a basis for I if

for all A ∈ I there exists B ∈ B such that A ⊆ B.

As an example, if X is an infinite set and I is the ideal of all the countable subsets of X,
then the set B of all countably infinite subsets of X will form a basis of I. For a less contrived
example, after introducing the Lebesgue measure in Section 2.2, we observe that every Lebesgue
null set is contained in some Lebesgue null set which also happens to be Borel. Consequently, the
set of all Borel null sets (sets which are both Borel and Lebesgue null) will form a basis for the
ideal of all Lebesgue null subsets of R. This observation leads to Theorem 2.3.1, but let us build
up to that theorem slowly, as several definitions need to be introduced before Theorem 2.3.1
can be understood.

Given a proper σ-ideal I on a set X, we can now define several cardinals by asking very
natural questions about “small” sets. First, note that we must require X to be uncountable in
order for I to even be a proper σ-ideal. The cardinal non(I) is then defined to be the smallest
cardinality of any subset of X which is not “small”. The cardinal cov(I) is defined to be the
smallest number of “small” sets needed to cover all of X. The cardinal add(I) is defined to
be the smallest number of “small” sets needed to build a set which is not “small”. Finally,
the cardinal cof(I) is defined to be the smallest cardinality of any basis for I. We write these
definitions out formally in Definition 2.1.3.

Definition 2.1.3 (Uniformity, Covering Number, Additivity, and Cofinality of an Ideal, [2,
Definition 2.7]). Let I ⊆ P(X) be a proper σ-ideal on an uncountable set X.

(1) The uniformity of I, denoted non(I), is defined by

non(I) := min{ |A| : A ⊆ X and A /∈ I }.

(2) The covering number of I, denoted cov(I), is defined by

cov(I) := min
󰁱
|C| : C ⊆ I and

󰁞
C = X

󰁲
.

(3) The additivity of I, denoted add(I), is defined by

add(I) := min
󰁱
|C| : C ⊆ I and

󰁞
C /∈ I

󰁲
.

(4) The cofinality of I, denoted cof(I), is defined by

cof(I) := min{ |B| : B ⊆ I and B is a basis for I }.

It is easy to check that these four cardinals non(I), cov(I), add(I), and cof(I) are un-
countable. In fact, even without knowing the ideal I or the set X, we can already establish
several inequalities between these cardinals.

Lemma 2.1.4 ([1, Lemma 1.3.2], [2, Section 2]). Let I be a proper σ-ideal on an uncountable
set X. Then all of the following hold:
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• add(I) ≥ ℵ1,

• add(I) ≤ cov(I) and add(I) ≤ non(I),

• cov(I) ≤ cof(I) and non(I) ≤ cof(I).

Proof. The inequality add(I) ≥ ℵ1 follows from I being a σ-ideal on X, as I must be closed
under countable unions.

We clearly have add(I) ≤ cov(I), since X /∈ I as I is a proper ideal on X.
Next, let A ∈ P(X) \ I be such that |A| = non(I). Then since A =

󰁖
{ {x} : x ∈ A }, we

have
add(I) ≤ |{ {x} : x ∈ A }| = |A| = non(I),

since I contains all the singleton subsets of X.
Now let B ⊆ I be a basis for I with |B| = cof(I). Then for any x ∈ X there exists B ∈ B

such that {x} ⊆ B. Hence
󰁖

B = X, and so we obtain cov(I) ≤ |B| = cof(I).
Finally suppose, for a contradiction, that |B| < non(I). For each B ∈ B, the set X \ B is

non-empty because I is a proper ideal on X. Now we form a set C ⊆ X as follows: for each
B ∈ B choose exactly one xB ∈ X \ B, and then let C := {xB : B ∈ B }. Then we have
|C| ≤ |B| < non(I), and hence C ∈ I. However, by construction, there does not exist any
B ∈ B for which C ⊆ B. This contradicts B being a basis for I. Therefore we must have
non(I) ≤ |B| = cof(I).

cov(I)

add(I)

non(I)

cof(I)

ℵ1

Figure 2: A Hasse diagram representing the inequalities in Lemma 2.1.4.

The inequalities in Lemma 2.1.4 are represented in Figure 2. These are important inequal-
ities, as they always hold regardless of the proper σ-ideal we are working with. Thus, even
without knowing the definitions of M and L, if we take on faith that M and L are proper σ-
ideals on R, then we can already see that four arrows in Cichoń’s diagram (drawn in Figure 1)
have already been established. In particular, we have the following inequalities:

• ℵ1 ≤ add(L) ≤ cov(L),

• add(M) ≤ cov(M), and

• non(L) ≤ cof(L).

Without knowing more about the ideal I or the ambient space X, we cannot prove any other
inequality between the five cardinals present in Figure 2. This is demonstrated by Example 2.1.5
and Example 2.1.6.
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Example 2.1.5. Let X be an uncountable set, and let I be the collection of all subsets A ⊆ X
with |A| ≤ κ.

• If |X| = ℵ1 and κ = ℵ0, then

ℵ1 = add(I) = non(I) = cov(I) = cof(I).

To find a basis B for I with |B| = ℵ1, choose a well-ordering of X of order-type ω1 and
take B to be the collection of all the proper initial segments of that well-ordering. This
is a basis because for any countable collection C of countable ordinals, we have that

󰁖
C

is also a countable ordinal.

• If |X| = ℵ3 and κ = ℵ1, then

ℵ1 < ℵ2 = add(I) = non(I) < ℵ3 = cov(I) ≤ cof(I).

These examples show that the arrow ℵ1 add(I), the arrow add(I) cov(I), and the
arrow non(I) cof(I) in Figure 2 cannot be reversed, and that we cannot draw the arrow
cov(I) non(I).

Example 2.1.6. Let C := {Cα}α∈ω1 be a collection of ℵ1 many pairwise disjoint sets such that
|Cα| = ℵ2 for all α ∈ ω1, and let X =

󰁖
C. Note that |X| = ℵ2. Now, letting

I1 :=

󰀻
󰀿

󰀽A ∈ P(X) : A ⊆
󰁞

j∈N
Sj for some S0, S1, S2, · · · ∈ C

󰀼
󰁀

󰀾

be the smallest σ-ideal containing each Cα, and letting

I2 := {A ∈ P(X) : |A| ≤ ℵ1 },

be the σ-ideal of all the subsets of X of cardinality at most ℵ1, we define

I := {A1 ∪A2 : A1 ∈ I1 and A2 ∈ I2 }.

Then we have
ℵ1 = add(I) = cov(I) < ℵ2 = non(I) ≤ cof(I).

In particular, the arrows add(I) non(I) and cov(I) cof(I) in Figure 2 cannot be
reversed, and the arrow non(I) cov(I) cannot be drawn.

We can also generalise the definition of add and cof to two ideals I and J on the same
underlying set X with I ⊆ J . The cardinal add(I,J ) is defined to be the smallest number of
“I-small” sets needed to build a set which is not “J -small”. The cardinal cof(I,J ) is defined
to be the smallest cardinality of any subset of J which acts as a basis for I. This is all written
out formally in Definition 2.1.7.

Definition 2.1.7 (Additivity and Cofinality of Two Ideals, [1, Definition 2.1.3]). Let I and J
be two proper σ-ideals on an uncountable set X, with I ⊆ J . We define

add(I,J ) := min
󰁱
|C| : C ⊆ I and

󰁞
C /∈ J

󰁲
,

cof(I,J ) := min{ |B| : B ⊆ J , and for all A ∈ I there exists B ∈ B with A ⊆ B }.

The cardinals add(I,J ) and cof(I,J ) roughly quantify how much “smaller” the sets in I
are compared to those in J . Note that add(I) = add(I, I) and cof(I) = cof(I, I). We also
have the following inequalities, some of which will be useful later in Section 3.3. These can be
proven in a similar fashion to Lemma 2.1.4.
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Lemma 2.1.8 ([1, Lemma 2.1.4]). Let I and J be proper σ-ideals on an uncountable set X,
and suppose that I ⊆ J . Then all of the following hold:

• add(I) ≤ add(I,J ) and add(J ) ≤ add(I,J ),

• cof(I,J ) ≤ cof(J ),

• add(I,J ) ≤ cov(I) and add(I,J ) ≤ non(J ),

• cov(J ) ≤ cof(I,J ) and non(I) ≤ cof(I,J ).

2.2 Alternative Representations of the Real Line

While we are mostly concerned with the small subsets of R, we will often find ourselves needing
to use alternative representations of R under which the cardinalities of the sets we are considering
do not change. This will allow us to use whichever space is most convenient in our proofs. The
alternatives to R which we will consider are the interval [0, 1], the Cantor space 2N, and the Baire
space NN. We present the definition of the Cantor space and the Baire space in Definition 2.2.1.

First, let us recall the definition of the product topology, which we will use regularly use. For
a J-indexed collection of topological spaces {Xj}j∈J , the basis of the product topology on the
space

󰁔
j∈J Xj consists of the sets of the form

󰁔
j∈J Uj where Uj is open in Xj for all j ∈ J ,

and Uj = Xj for all but finitely many j ∈ J [17, Section 1.A].

Definition 2.2.1 (The Cantor Space and the Baire Space, [17, Section 3.A], [1, Section 1.1.B]).
Let A be a non-empty set equipped with the discrete topology. The set AN of functions N → A
is identified with the set

󰁔
n∈NA of infinite sequences of elements of A, equipped with the

product topology. More explicitly, f ∈ AN if and only if (f(0), f(1), f(2), . . . ) ∈
󰁔

n∈NA.
The space 2N = {0, 1}N is called the Cantor space, and the space NN is called the Baire

space.

With the usual Euclidean topology on [0, 1], the Cantor space 2N is homeomorphic to the
Cantor (middle-third) set [6, Equation 2.32 in Section 2.4] equipped with the subspace topology
[6, Theorem 3.1]. The homeomorphism is obtained by writing each number in the Cantor set
as its 3-adic expansion [6, Equation 2.24 and Equation 2.25 in Section 2.4] using only the digits
0 and 2. One can also think of 2N as the set of all numbers in the interval [0, 1] written in their
binary expansion [3, Definition 10].5

With the usual Euclidean topology on R, the Baire space NN is homeomorphic to the set
R \ Q of irrational numbers equipped with the subspace topology [6, Theorem 3.25]. This
homeomorphism is obtained by representing each irrational number as a continued fraction of
natural numbers [6, Equation 2.33 in Section 2.4].6

We now start with the first collection of “small” subsets of R which we will be focusing on
— sets with Lebesgue measure zero. The definition of the Lebesgue measure is presented below.

Definition 2.2.2 (Lebesgue Measure and Lebesgue Null Sets, [6, Section 4.2], [3, Definition 10],
[5, Definition 9], [2, Section 1]). The Lebesgue measure is defined on the space of real numbers
R, the real interval [0, 1], the Cantor space 2N as follows:

• For each X ∈ {R, [0, 1]}, the Lebesgue outer measure on X is λ∗
X : P(X) → R≥0 ∪ {∞}

defined by

λ∗
X(A) := inf

󰀻
󰀿

󰀽
󰁛

j∈N
(bj − aj) : A ⊆

󰁞

j∈N
((aj , bj) ∩X)

󰀼
󰁀

󰀾 ,

5Although this is not a bijection between 2N and [0, 1], it is “close enough” to a bijection. For more details,
see the proof of Theorem 2.2.5.

6A homeomorphism between NN and [0, 1] \Q is presented in the proof of Theorem 2.2.5.
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where (aj , bj) denotes an open interval in R. Let

MX := {A ∈ P(X) : λ∗
X(B) = λ∗

X(A ∩B) + λ∗
X(A ∩ (X \B)) for all B ⊆ X }

be the set of Lebesgue measurable subsets of X. The Lebesgue measure λX on X is the
restriction of λ∗

X to MX , that is, λX := λ∗
X |MX

.

• The Lebesgue measure on 2N is the unique product measure λ2N defined on the σ-algebra
generated by the collection of basic open sets

B :=

󰀫
󰁜

n∈N
An : An ⊆ {0, 1} and An = {0, 1} for all but finitely many n ∈ N

󰀬

satisfying

λ2N

󰀣
󰁜

n∈N
An

󰀤
=

󰁜

n∈N
µ(An) for all

󰁜

n∈N
An ∈ B,

where µ : P({0, 1}) → R is defined by

µ(A) :=
|A|
2

.

For X ∈
󰀋
R, [0, 1], 2N

󰀌
, we say a set N ⊆ X is a Lebesgue null set if λX(N) = 0. We write

L(X) for the collection of all the Lebesgue null sets of X.

For X ∈
󰀋
R, [0, 1], 2N

󰀌
, the set L(X) of Lebesgue null sets is a proper σ-ideal on X.

In topological spaces, nowhere dense sets and meagre sets also turn out to have properties
which a “small” set should have. For a topological space X and a subset A ⊆ X, we write A◦

for the interior of A in X, and we write A for the closure of A in X.

Definition 2.2.3. Let X be a topological space. We say A ⊆ X is nowhere dense in X if
(A)◦ = ∅. We say B ⊆ X is meagre in X if B =

󰁖
j∈NAj where {Aj}j∈N is a countable7

collection of nowhere dense sets of X. We write M(X) for the set of all meagre subsets of X.

For any non-meagre topological space X, the set M(X) of meagre subsets of X is a proper
σ-ideal on X. Part of this is due to the Baire category theorem, from which we can show that
the set R of real numbers endowed with its usual topology is not meagre.

With these two different notions of “small” subsets of R, having Lebesgue measure zero and
being meagre, we are now interested in the cardinals

add(L(R)), cov(L(R)), non(L(R)), cof(L(R)),
add(M(R)), cov(M(R)), non(M(R)), cof(M(R)).

It will turn out that these cardinals have alternative representations using [0, 1], 2N, or NN. To
establish this, we need the following lemma.

Lemma 2.2.4 ([6, Theorem 7.2]). Let I1 and I2 be proper σ-ideals on uncountable sets X1 and
X2 respectively. Fix C1 ∈ I1 and C2 ∈ I2. Suppose there exists a function f : X1 → X2 such
that f |X1\C1

: X1 \ C1 → X2 \ C2 is bijective and

for all B ⊆ X1 \ C1, we have B ∈ I1 if and only if f(B) ∈ I2.

Then for each ch ∈ {add, cov,non, cof}, we have ch(I1) = ch(I2).
7Finite or countably infinite.
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Proof. First, observe that

for all B ⊆ X2 \ C2, we have B ∈ I2 if and only if f−1(B) ∈ I1. (1)

Let S1 ⊆ I1 be such that |S1| < add(I2). We will show that
󰁖
S1 ∈ I1, which shows that

we must necessarily have add(I2) ≤ add(I1). Define S2 := { f(A) : A ∈ S1 } ⊆ I2 and observe
that

󰁖
S2 ∈ I2 since |S2| ≤ |S1| < add(I2). Recalling that f |X1\C1

: X1 \ C1 → X2 \ C2 is a
bijection, we obtain 󰁞

S1 ⊆ f−1
󰀓󰁞

S2

󰀔
∪ C1 ∈ I1 due to (1).

Now let S1 ⊆ I1 be such that
󰁖

S1 = X1 and |S1| = cov(I1). Define

S2 := { f(A) : A ∈ S1 } ∪ {C2} ⊆ I2

and observe that
󰁖
S2 = X2. Therefore cov(I2) ≤ |S2| ≤ |S1| = cov(I1).

Next, let A1 ∈ P(X1) \ I1 be such that |A1| = non(I1). Then A1 \ C1 /∈ I1, so we define
A2 := f(A1 \ C1) /∈ I2. Hence non(I2) ≤ |A2| ≤ |A1| = non(I1).

Finally, let B1 ⊆ I1 be a basis for I1 with |B1| = cof(I1). Define

B2 := { f(A) ∪ C2 : A ∈ B1 },

and notice that B2 is a basis for I2. Therefore, cof(I2) ≤ |B2| ≤ |B1| = cof(I1).
The proofs of the reverse inequalities ch(I1) ≤ ch(I2) for each ch ∈ {add, cov,non, cof}

are similar to the proofs above.

Armed with Lemma 2.2.4, we can now show how the spaces [0, 1], 2N, and NN really do act
as alternative representations of R when talking about the cardinals we are interested in.

Theorem 2.2.5 ([6, Theorem 7.3]). For each ch ∈ {add, cov,non, cof}, we have

ch(M(R)) = ch(M([0, 1])) = ch
󰀓
M

󰀓
2N

󰀔󰀔
= ch

󰀓
M

󰀓
NN

󰀔󰀔
, and

ch(L(R)) = ch(L([0, 1])) = ch
󰀓
L
󰀓
2N

󰀔󰀔
.

Proof (Sketch). Fix any ch ∈ {add, cov,non, cof}. We will define functions that can be used
with Lemma 2.2.4 to give the result.

To show that ch(M([0, 1])) = ch(M(R)) and ch(L([0, 1])) = ch(L(R)), define the function
f : [0, 1] → R by

f(x) :=

󰀻
󰁁󰀿

󰁁󰀽

0, if x = 0 or x = 1,

− 1
x + 2, if 0 < x ≤ 1

2 ,

− 1
x−1 − 2, if 1

2 < x < 1.

Define C1 := {0, 1}, noting that C1 is meagre and Lebesgue null in [0, 1]. Then f |[0,1]\C1
: (0, 1) →

R is a homeomorphism, and the images of Lebesgue null sets remain Lebesgue null under f |(0,1)
and f |−1

(0,1).

Next, to show that ch
󰀃
M

󰀃
2N

󰀄󰀄
= ch (M ([0, 1])) and ch

󰀃
L
󰀃
2N

󰀄󰀄
= ch (L ([0, 1])), define

the function g : 2N → [0, 1] by

g(α) :=
󰁛

n∈N

α(n)

2n+1
.

Define C1 :=
󰀋
α ∈ 2N : there exists N ∈ N such that for all n > N we have α(n) = 1

󰀌
, noting

that C1 is meagre and Lebesgue null in 2N. Then g|2N\C1
: 2N \C1 → [0, 1] is a homeomorphism,

and the images under g|2N\C1
and g|−1

2N\C1
of Lebesgue null sets remain Lebesgue null.
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Finally, to show that ch
󰀃
M

󰀃
NN󰀄󰀄 = ch (M ([0, 1])), we first observe that N is homeomor-

phic to the discrete space Z+ := N \ {0} of strictly positive integers, so we may identify the
Baire space NN with (Z+)

N.8 Define the function h : (Z+)
N → [0, 1] by

h(α) :=
1

α(0) +
1

α(1) +
1

α(2) +
1

α(3) +
1

α(4) + · · ·

where h(α) is computed as the limit of the continued fractions. Define C2 := [0, 1] ∩Q, the set
of all rational numbers between 0 and 1. Then C2 is meagre in [0, 1], and h : (Z+)

N → [0, 1]\C2

is a homeomorphism [6, Theorem 3.25].

Theorem 2.2.5 allows us to simply write the cardinals as add(L), non(M), etc. without
ambiguity. It also allows us much more flexibility in proofs, as we may choose to work in R,
[0, 1], 2N, or NN when proving results about the cardinals add(L), non(M), etc.

2.3 Lebesgue Null Sets and Meagre Subsets of the Real Line

Let us recall the fact that there are 2ℵ0 many subsets of R [17, Section 11.B] which are Borel.
Using this, we may establish an upper bound and lower bound on the cardinals add(L), cov(L),
non(L), and cof(L). These bounds will show that these cardinals qualify for discussion as
cardinal characteristics of the continuum.

Theorem 2.3.1 ([1, Section 2.1]). add(L) ≥ ℵ1 and cof(L) ≤ 2ℵ0.

Proof. We work in R.
Since L is a proper σ-ideal, the inequality add(L) ≥ ℵ1 follows from Lemma 2.1.4. Now

recall that given any Lebesgue measurable set M ⊆ R, we can write M = B \N for some Borel
set B ⊆ R and some Lebesgue null set N ⊆ R [13, Proposition 3.6]. Since every Lebesgue null
set is Lebesgue measurable [13, Lemma 3.2], every null set must be contained in some set which
is both Borel and Lebesgue null. Therefore the collection of all subsets of R which are both
Borel and Lebesgue null forms a basis for the ideal L. Since there are only 2ℵ0 many Borel
subsets of R, we conclude that cof(L) ≤ 2ℵ0 .

In a similar spirit to Theorem 2.3.1, we can establish bounds for add(M), cov(M), non(M),
and cof(M).

Theorem 2.3.2 ([1, Section 2.1]). add(M) ≥ ℵ1 and cof(M) ≤ 2ℵ0.

Proof. We work in R.
Since M is a proper σ-ideal on R, the inequality add(M) ≥ ℵ1 follows from Lemma 2.1.4.

Now given any meagre set M ⊆ R, write M =
󰁖

n∈NAn, where A0, A1, · · · ⊆ R are nowhere
dense in R. Then An is also nowhere dense for each n ∈ N, and so M ⊆

󰁖
n∈NAn ∈ M(R).

Noting that
󰁖

n∈NAn is Borel, we conclude that every meagre set is contained in some Borel
set which is also a countable union of closed nowhere dense sets. Since there are only 2ℵ0 many
Borel subsets of R, we obtain cof(M) ≤ 2ℵ0 .

8There is no real reason to do this other than having a nicer-looking function h. Without doing this, the
denominators in h will need to have consist of (α(n) + 1) instead of α(n) to avoid the case of division by zero.
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While we think of Lebesgue null sets and meagre sets as being rather “small” subsets of R,
they capture the idea of “small” in very different ways [1, Section 2.1]. A Lebesgue null set
may be dense (e.g. the set Q of rational numbers). Conversely, a nowhere dense set may have
non-zero Lebesgue measure (e.g. the Smith-Volterra-Cantor set, also known as the fat Cantor
set). The situation is even worse with meagre sets. We can actually decompose R into a disjoint
union of a meagre set A and a null set B, so that the meagre set A has full measure, and the
null set B is comeagre.

Lemma 2.3.3 ([1, Lemma 2.1.6]). There exist A ∈ L(R) and B ∈ M(R) such that A∪B = R.

Proof. Let { qn : n ∈ N } be an enumeration of all the rational numbers in R. For each m ∈ N,
define

Um :=
󰁞

n∈N,
n>m

󰀕
qn − 1

2n
, qn +

1

2n

󰀖
.

Each Um is open in R because it is a union of open intervals. Also, as the rational numbers are
dense in R, each Um is also dense because they contain all but finitely many rational numbers.
Let A :=

󰁗
m∈N Un. Observe that

λR(Um) ≤
󰁛

n∈N,
n≥m

2

2n
=

1

2m−1
.

Therefore λR(A) ≤ 1
2m−1 for all m ∈ N, and hence A ∈ L. Now let

B := R \A =
󰁞

m∈N
(R \ Um) .

Observe that for each m ∈ N the set Um is open and dense in R, so R \ Um must be nowhere
dense in R. Therefore B is a countable union of nowhere dense sets, and so B ∈ M(R).

We can use Lemma 2.3.3 to draw two more arrows in Cichoń’s diagram. Working in the
Cantor space 2N, and recalling that there is a canonical mapping of 2N into [0, 1], we exploit the
fact that translation in [0, 1] is a measure-preserving homeomorphism to establish the following
theorem.

Theorem 2.3.4 (Rothberger’s Theorem, [1, Theorem 2.1.7]).

cov(L) ≤ non(M) and cov(M) ≤ non(L).

Proof. We work in 2N.
By Lemma 2.3.3, we can write [0, 1] = A′ ∪ B′ for some Lebesgue null set A′ ⊂ [0, 1] and

some meagre set B′ ⊂ [0, 1]. Using the function g from the proof of Theorem 2.2.5, we can write
2N = A ∪B for some Lebesgue null set A ⊂ 2N and some meagre set B ⊂ 2N.

Let X ∈ P
󰀃
2N

󰀄
\M

󰀃
2N

󰀄
be such that |X| = non(M). Observe that x+A := {x+ a : a ∈

A } is meagre for all x ∈ X, where addition is understood to be addition of functions modulo 2.9

We will show that X +A :=
󰁖

x∈X(x+A) = 2N. Suppose, for a contradiction, that there exists
some z ∈ 2N \ (X + A). If z + x ∈ A for some x ∈ X, then we obtain z ∈ −x+ A ⊆ X + A,10

contrary to the the definition of z. So z +X must be disjoint from A, which yields z +X ⊆ B.
However, this means z + X ∈ M

󰀃
2N

󰀄
, which implies that X ∈ M

󰀃
2N

󰀄
, contradicting the

definition of X. Therefore,

cov(L) ≤ |{x+A : x ∈ X }| ≤ |X| = non(M).

The proof for the inequality cov(M) ≤ non(L) is similar.

9For example, if x(0) = 1 and a(0) = 1 then (x+ a)(0) = 0.
10Since we are working with addition modulo 2, we can guarantee that −x ∈ X because x = −x modulo 2.
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The inequalities involving the cardinals add(L), cov(L), non(L), cof(L), add(M), cov(M),
non(M), and cof(M) proven so far are presented in Figure 3. Specifically, the diagram repre-
sents the inequalities proven in Lemma 2.1.4, Theorem 2.3.1, Theorem 2.3.2, and Theorem 2.3.4,
where an arrow κ λ denotes the inequality κ ≤ λ.

ℵ1

cov(L)

add(L)

non(L)

cof(L)

2ℵ0

add(M)

cov(M)

non(M)

cof(M)

Figure 3: Our Hasse diagram of cardinal characteristics of the continuum.
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3 Growth of Functions

We now turn our attention to the Baire space NN. As this space consists of functions f : N → N,
we will define cardinals in terms of properties of functions. We will be exploring the long-term
behaviour of functions in NN, seeing if some function f : N → N will eventually dominate some
other function g : N → N.

3.1 The Dominating and The Unbounding Number

We begin by formalising a definition for f ∈ NN to “eventually dominate” g ∈ NN. To do this,
we define a new partial order ≤∗ on NN.

Definition 3.1.1 (The ≤∗ relation, [2]). For functions f, g ∈ NN, we write f ≤∗ g (and also
write g ≥∗ f) if there exists some N ∈ N such that

f(n) ≤ g(n) for all n ≥ N.

Note that the relation ≤∗ is a partial order on NN.
In other words, f ≤∗ g if f(n) ≤ g(n) for all but finitely many n ∈ N. This is somewhat

similar to the big-O notation in discrete mathematics. There, we write f = O(g) if there exists
some constant k ∈ R>0 and some N ∈ N such that f(n) ≤ kg(n) for all n ≥ N . The ≤∗ relation
simply requires that this constant k is actually equal to 1, so that the graph of f will eventually
lie below the graph of g.

At this point, the reader may notice some similarities between the definition of ≤∗ and the
product topology on NN. We will establish this connection later in Section 3.2. For now, this
relation ≤∗ serving as a new notion for function dominance allows us to define two new cardinals
— the dominating number d and the unbounding number b.

Definition 3.1.2 (Dominating Number, [2]). A subset D ⊆ NN is a dominating set if for
all f ∈ NN there exists g ∈ D such that f ≤∗ g. The dominating number d is the smallest
cardinality of all dominating sets, i.e.

d := min{ |D| : D is a dominating set }.

Definition 3.1.3 (Unbounding Number, [2]). A subset B ⊆ NN is an unbounded set if there
does not exist g ∈ NN such that for all f ∈ B we have g ≥∗ f . The unbounding number11 b is
the smallest cardinality of all unbounded sets, i.e.

b := min{ |B| : B is an unbounded set }.

We will show that these cardinals b and d actually lie between ℵ1 and 2ℵ0 . Furthermore, as
Theorem 3.1.4 will show, all dominating sets are unbounded, giving b ≤ d.

Theorem 3.1.4 ([2, Theorem 2.4]). ℵ1 ≤ b ≤ d ≤ 2ℵ0.

Proof. Let B be an unbounded set with |B| = b, and let D be a dominating set with |D| = d.
First, we have

d = |D| ≤
󰀏󰀏󰀏NN

󰀏󰀏󰀏 = ℵ0
ℵ0 = 2ℵ0 .

Next suppose, for a contradiction, that b ≤ ℵ0. Clearly b > 0, so we may enumerate B with
B = { gn : n ∈ N }.12 Now define f : N → N by

f(x) := 1 + max
n∈N,
n≤x

gn(x) for all x ∈ N.

11The unbounding number is also sometimes called the bounding number, which explains the choice of the letter
b. The use of the term “bounding number” can be seen in, for example, Andreas Blass’s Combinatorial Cardinal
Characteristics of the Continuum [2] and relatively recently-published papers [3] [5].

12The gn’s do not need to be distinct, so this argument covers the case of b being finite.
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We observe that for each n ∈ N, we have f(x) > gn(x) for all x ≥ n, and so f ≥∗ gn. This
contradicts B being an unbounded set. Therefore b ≥ ℵ1.

Finally, we will show that D must be an unbounded set. Suppose there exists g ∈ NN such
that for all f ∈ D we have g ≥∗ f . Define h : N → N by h(x) := g(x) + 1 for all x ∈ N. Then
for every f ∈ D, there exists some N ∈ N such that h(x) > f(x) for all x ≥ N . Then it is not
the case that f ≥∗ h, contradicting D being a dominating set. Therefore D is an unbounded
set, and we obtain b ≤ |D| = d.

ℵ1

cov(L)

add(L)

non(L)

cof(L)

2ℵ0

add(M)

cov(M)

non(M)

cof(M)

b

d

Figure 4: Our Hasse diagram of cardinal characteristics of the continuum.

Inserting b and d into our diagram of cardinal characteristics of the continuum, Theo-
rem 3.1.4 allows us to obtain Figure 4. We wish to investigate how b and d interact with all the
other cardinal characteristics defined on Lebesgue null and meagre subsets of R.

3.2 Compact Subsets of the Baire Space

As b and d were defined on NN, we are motivated to investigate the topological properties of
NN to obtain more inequalities involving b and d. For reasons that will become apparent soon,
we define a new ideal Kσ to be the smallest ideal containing all the compact subsets of NN.

Definition 3.2.1 ([2, Section 2], [1, Section 2.2], [6, Section 7.5]). We write Kσ for the collection
of all A ⊆ NN such that A ⊆

󰁖
j∈NKj for some countable collection {Kj}j∈N of compact subsets

of NN.

Compact subsets of NN can be completely classified, as Lemma 3.2.2 will show. We employ
Tychonoff’s theorem, which states that the product of compact sets remains compact in the
product topology [17, Proposition 4.1].

Lemma 3.2.2 ([2, Theorem 2.8], [1, Lemma 1.2.3]). Let K ⊆ NN. Then K is compact if and
only if K is closed and there exists a collection {Bn}n∈N of finite sets such that K ⊆

󰁔
n∈NBn.
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Proof. Suppose K ⊆ NN is compact. Then K must be closed since NN is Hausdorff. Now
suppose, for a contradiction, that K is not contained in any product of finite subsets of N. For
each j ∈ N, define the projection πj : NN → N onto the j-th coordinate by πj(α) := α(j). Note
that this πj is continuous. By our assumption, there must exist j0 ∈ N such that πj0(K) is an
infinite set. But then πj0(K) is not compact, contradicting πj0 being continuous.

For the converse, suppose K is closed and K ⊆
󰁔

n∈NBn for some collection {Bn}n∈N of
finite subsets of N. Let U be an open cover of K. Then U ∪

󰀋
NN \K

󰀌
is an open cover of NN,

and hence an open cover of
󰁔

n∈NBn. By Tychonoff’s theorem, since each Bn is compact, the
product

󰁔
n∈NBn must also be compact, and so there must exist a finite subcover U ′ ⊆ U such

that
󰁔

n∈NBn ⊆
󰁖
U ′ ∪

󰀋
NN \K

󰀌
. Therefore K ⊆

󰁖
U ′, and so K is compact.

With the characterisation of compact subsets of NN in Lemma 3.2.2, we can show how Kσ

relates to M
󰀃
NN󰀄.

Lemma 3.2.3 ([1, Section 2.2], [1, Lemma 1.2.3], [2, Theorem 2.8]). Kσ ⊆ M
󰀃
NN󰀄, and Kσ is

a proper σ-ideal on NN.

Proof. Recalling the definition of the product topology, every open set in NN is the union of
sets of the form

󰁔
n∈N Un, where Un ⊆ N, and we must have Un = N for all but finitely many

n ∈ N. So Lemma 3.2.2 implies that every compact subset of NN is nowhere dense, and therefore
Kσ ⊆ M

󰀃
NN󰀄.

By definition, Kσ is a σ-ideal on NN. We need to show that it is a proper ideal. For each
f ∈ NN, define

Cf := { g ∈ NN : g(n) ≤ f(n) for all n ∈ N }, and

C∗
f := { g ∈ NN : g ≤∗ f }.

We can rephrase Lemma 3.2.2 to say that a set K ⊆ NN is compact if and only if K is closed
and there exists some f ∈ NN such that K ⊆ Cf . Arguing via a diagonal dominating function,
similarly as in the proof for b ≥ ℵ1 in Theorem 3.1.4, we see that for any A ∈ Kσ there must
exist some f ∈ NN such that A ⊆ C∗

f . Furthermore, for any h ∈ NN, we must have C∗
h ∈ Kσ

since

C∗
h =

󰁞

n∈N

󰁞

M∈N

󰁱
g ∈ NN : g(k) ≤ h(k) for all k ≥ n, and g(k) ≤ M for all k < n

󰁲
.

Therefore Kσ =
󰁱
A ∈ P

󰀃
NN󰀄 : A ⊆ C∗

f for some f ∈ NN
󰁲
. Hence NN /∈ Kσ.

Armed with Lemma 3.2.3, we can now establish inequalities between b, d, and several other
cardinals introduced in Section 2.

Theorem 3.2.4 ([1, Lemma 2.2.1], [2, Theorem 2.8]).

add(Kσ) = non(Kσ) = b and cov(Kσ) = cof(Kσ) = d.

Consequently, b ≤ non(M) and d ≥ cov(M).

Proof. For f ∈ NN, define C∗
f := { g ∈ NN : g ≤∗ f }.

From the proof of Lemma 3.2.3, a subset A ⊆ NN satisfies A ∈ Kσ if and only if there exists
a function f ∈ NN with A ⊆ C∗

f . Furthermore, f, g ∈ NN satisfy f ≤∗ g if and only if C∗
f ⊆ C∗

g .
So the definitions of b and d immediately yield b = non(Kσ) and d = cov(Kσ).

Let C ⊆ Kσ be such that
󰁖

C /∈ Kσ and |C| = add(Kσ). For each A ∈ C, choose a function
fA ∈ NN with A ⊆ C∗

fA
. Define B := { fA : A ∈ C }. If there exists a function g ∈ NN such that
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B ⊆ C∗
g , then

󰁖
C ⊆

󰁖
fA∈B C∗

fA
⊆ C∗

g ∈ Kσ, contradicting the assumption of C. Therefore B is
an unbounded set, and so we obtain

b ≤ |B| ≤ |C| = add(Kσ).

Recalling Lemma 2.1.4, we obtain b ≤ add(Kσ) ≤ non(Kσ) = b and so add(Kσ) = b.
Now let D ⊆ NN be a dominating set with |D| = d, and define B := {C∗

f : f ∈ D }. For any
A ∈ Kσ, there exists some f ∈ NN such that A ⊆ C∗

f . Then since D is a dominating set, there
exists some f ′ ∈ D such that C∗

f ⊆ C∗
f ′ . Therefore B is a basis for Kσ, and hence

cof(Kσ) ≤ |B| ≤ |D| = d.

Lemma 2.1.4 then yields d = cov(Kσ) ≤ cof(Kσ) ≤ d and so cof(Kσ) = d.
Finally, the inequalities b = non(Kσ) ≤ non(M) and cov(M) ≤ cov(Kσ) = d follow from

the fact that Kσ ⊆ M
󰀃
NN󰀄, due to Lemma 3.2.3.

3.3 Tukey Functions

At this point, we are four inequalities away from establishing all the arrows in Cichoń’s diagram.
We are still yet to establish the following inequalities to draw all the arrows in Figure 1:

• b ≥ add(M),

• d ≤ cof(M),

• add(M) ≥ add(L),

• cof(M) ≤ cof(L).

We will now turn to proving the first two inequalities. A Tukey function mapping elements
of a partially ordered set to elements of another partially ordered set is a function such that
the pre-image of any bounded set remains bounded. We concern ourselves with this discussion
because ⊆ is a partial order on any collection of sets.

Definition 3.3.1 (Tukey Functions, [1, Definition 2.1.1]). Let (P,≼P ) and (Q,≼Q) be partially
ordered sets. We say τ : P → Q is a Tukey function if for every bounded X ⊆ Q, the set τ−1(X)
is bounded in P . More explicitly, τ is Tukey if: for every X ⊆ Q, if there exists some q ∈ Q
such that

x ≼Q q for all x ∈ X,

then there exists some p ∈ P such that

y ≼P p for all y ∈ τ−1(X).

We now prove a significant result which will help establish the inequalities b ≥ add(M) and
d ≤ cof(M).

First, let us set up some notation. Let A be a non-empty set. Given a natural number
j ≥ 1, we let Aj be the set of all functions f : {0, . . . , j − 1} → A. Given two natural numbers
j0, j1 ≥ 1, and given two functions f0 ∈ Aj0 and f1 ∈ Aj1 , we define the concatenation f0 ⌢ f1
to be the unique function in Aj0+j1 satisfying

(f0 ⌢ f1)(x) =

󰀫
f0(x) if 0 ≤ x < j0,

f1(x− j0) if j0 ≤ x < j1.

Given a natural number j ≥ 1 and a function f ∈ Aj , we define the length of f to be len(f) := j,
and we define the open set generated by f to be the countably infinite product of sets

[f ] := {f(0)}× · · ·× {f(j − 1)}×A×A×A× · · · ∈ AN,
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where we view a function in AN as an infinite ordered list of elements of A. Note that if A
is given the discrete topology then [f ] is actually one of the basis elements for the product
topology on AN.

Lemma 3.3.2 ([1, Theorem 2.2.2]). Equip NN with the partial order ≤∗, and equip M
󰀃
NN󰀄

with the partial order ⊆. Then there exists a Tukey function τ : NN → M
󰀃
NN󰀄.

Proof. For f ∈ NN, define again C∗
f :=

󰀋
g ∈ NN : g ≤∗ f

󰀌
, and define f↗ : N → N by

f↗(n) := 1 + max{ f(j) : j ≤ n }.

Define τ : NN → M
󰀃
NN󰀄 by

τ(f) := C∗
f↗ .

From the proof of Lemma 3.2.3, we see that indeed the image of τ is contained in Kσ, and hence
contained in M

󰀃
NN󰀄. We will show that this function τ is a Tukey function.

Let F ∈ M
󰀃
NN󰀄. We need to show that there exists hF ∈ NN such that for every f ∈ NN,

if τ(f) ⊆ F then f ≤∗ hF . Let F0, F1, · · · ⊆ NN be a sequence of closed nowhere dense sets such
that F ⊆

󰁖
j∈N Fj . Define hF : N → N as follows:

1. Choose a bijection β : N →
󰁖

j∈NNj . So the sequence (β(0), β(1), β(2), . . . ) is an
enumeration of all finite sequences of natural numbers.

2. Recursively define a sequence k0, k1, · · · ∈ N of natural numbers and a sequence s0, s1, · · · ∈󰁖
j∈NNj of finite sequences of natural numbers as follows:

(a) Let k0 := 0.

(b) Assuming kn is already defined for some n ∈ N, define the formula ϕn(s) to be true
if and only if s ∈

󰁖
j∈NNj satisfies the following property:

for every t ∈
󰁞

m∈N,
m≤kn

{0, . . . , kn}m, we have [t ⌢ s] ∩
󰁞

i∈N,
i≤n

Fi = ∅.

For every n ∈ N, we can always guarantee the existence of some s ∈
󰁖

j∈NNj such
that ϕn(s) holds. This is because F0, . . . , Fn are closed and nowhere dense, and the
complement of a closed nowhere dense set is open and dense.

(c) For n ∈ N, define
sn := β (min { j ∈ N : ϕ(n,β(j)) }) ,

and define

kn+1 := kn + len(sn) + max{ sn(i) : i ∈ N and i < len(sn) }+ 1.

3. Finally define hF : N → N by

hF (n) := max{ sn(i) : i ∈ N and i < len(sn) }.

We wish to show that if τ(f) ⊆ F then f ≤∗ hF . We prove the contrapositive. Suppose
f ∈ NN satisfies f ∕≤∗ hF . Define a strictly increasing infinite sequence of natural numbers
0 ≤ x0 < x1 < x2 < · · · such that

for all j ∈ N, we have f(j) > hF (j) if and only if j ∈ {x0, x1, x2, . . . }.

Let g : N → N have the property that for all n ≥ 1, we have

g ∈
󰀅
g|{0, ..., kxn−1} ⌢ sxn

󰀆
.

An example of such a function g would be the following:
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1. Let g̃1 ∈ Nkx1 be the function g̃1(j) := 0 for all 0 ≤ j < kx1 , and let g1 ∈ Nkx1+len(sx1) be
the function g1 := g̃1 ⌢ sx1 .

2. For each n ≥ 1, let g̃n+1 ∈ Nkxn+1 be the function defined by

g̃n+1(j) :=

󰀫
gn(j) if 0 ≤ j < kxn + len(sxn),

0 if kxn + len(sxn) ≤ j < kxn+1 ,

and let gn ∈ Nkxn+1+len(sxn+1) be the function gn+1 := g̃n+1 ⌢ sxn+1 .

3. Define g : N → N to be the common extension of gn for all n ≥ 1.

Intuitively, we have
g = g̃1 ⌢ sx1 ⌢ g̃2 ⌢ sx2 ⌢ g̃3 ⌢ sx3 ⌢ · · ·

where each g̃n is a finite sequence of zeros such that g̃1 ⌢ sx1 ⌢ · · · ⌢ sxn−1 ⌢ g̃n has length
kxn . Then, by the definition of sn and ϕn above, we have g /∈ Fn for all n ∈ N. Hence g /∈ F .
Now for all j ∈ N, we have two cases:

• g(j) = 0, or

• there exist n, t ∈ N such that kxn ≤ j < kxn+1 and g(j) = sxn(t).

In the first case, we have g(j) = 0 ≤ f↗(j). In the second case, since xn ≤ kxn ≤ j, we have

g(j) ≤ hF (xn) < f(xn) ≤ f↗(j).

Therefore g(j) ≤ f↗(j) for all j ∈ N. In particular, we have g ∈ τ(f). Therefore g ∈ τ(f) \ F ,
and so τ(f) ∕⊆ F .

By virtue of Lemma 3.3.2, we can now establish two more inequalities in Cichoń’s diagram.
We will use the Tukey function τ in the proof of Lemma 3.3.2. Furthermore, we will make use
of the generalised definitions of add and cof introduced in Definition 2.1.7.

Theorem 3.3.3 ([1, Theorem 2.2.3, Corollary 2.2.9, Theorem 2.2.11]).

add(Kσ) = add(Kσ,M) and cof(Kσ) = cof(Kσ,M)

Consequently, b ≥ add(M) and d ≤ cof(M).

Proof. For each f ∈ NN, define again C∗
f := { g ∈ NN : g ≤∗ f }.

Since Kσ ⊆ M
󰀃
NN󰀄, Lemma 2.1.8 gives us

add(Kσ) ≤ add(Kσ,M) and cof(Kσ) ≥ cof(Kσ,M).

So it only remains to prove the inequalities add(Kσ) ≥ add(Kσ,M) and cof(Kσ) ≤ cof(Kσ,M).
Let C ⊆ Kσ be such that |C| = add(Kσ) and

󰁖
C /∈ Kσ. For each A ∈ C, choose a

function fA ∈ NN such that A ⊆ C∗
fA
. Take the Tukey function τ : NN → Kσ from the proof of

Lemma 3.3.2, and consider the set 󰁞

A∈C
τ(fA).

We claim that this set is not meagre. Indeed, if
󰁖

A∈C τ(fA) = F for some meagre F ⊆ NN,
then taking the associated mapping hF from the proof of Lemma 3.3.2 yields fA ≤∗ hF for
all A ∈ C. However this means

󰁖
C ⊆ C∗

hF
∈ Kσ, which contradicts the definition of C. We

therefore obtain add(Kσ,M) ≤ |{ τ(fA) : A ∈ C }| ≤ |C| = add(Kσ).
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Now let B ⊆ M
󰀃
NN󰀄 be such that |B| = cof(Kσ,M) and

for all A ∈ Kσ there exists some F ∈ B with A ⊆ F.

Then using the mapping F 󰀁→ hF from the proof of Lemma 3.3.2, the set

D := {hF : F ∈ B }

forms a dominating set in NN. This is because given any f ∈ NN we have τ(f) ∈ Kσ, and so
there exists some F ∈ B with τ(f) ⊆ F , yielding f ≤∗ hF . Therefore {C∗

h : h ∈ D } is a basis
for Kσ, and so cof(Kσ) ≤ |{C∗

h : h ∈ D }| ≤ cof(Kσ,M).
Finally, Theorem 3.2.4 and Lemma 2.1.8 yield b ≥ add(M) and d ≤ cof(M).

Incorporating the inequalities proven in a result of Theorem 3.2.4 and Theorem 3.3.3 into
Figure 4 and rearranging the diagram, we obtain Figure 5 representing all the inequalities proven
between the cardinal characteristics of the continuum we have seen so far.

ℵ1

cov(L)

add(L)

non(L)

cof(L)

2ℵ0

add(M)

cov(M)

non(M)

cof(M)

b

d

Figure 5: Our Hasse diagram of cardinal characteristics of the continuum.

Theorem 3.3.3 mainly relied on the specific Tukey function τ that was constructed in
Lemma 3.3.2, rather than general properties of Tukey functions. Lemma 3.3.4 explains why
we introduced the concept of Tukey functions, and how it may be useful.

Lemma 3.3.4 ([1, Lemma 2.1.2]). Let I and J be ideals on a set X, equipped with the partial
order ⊆. Suppose there exists a Tukey function τ : I → J . Then

add(I) ≥ add(J ) and cof(I) ≤ cof(J ).

Proof. Let C ⊆ I be such that |C| < add(J ). Then, because for every A ∈ C we have τ(A) ∈ J ,
it follows that τ(

󰁖
C) =

󰁖
A∈C τ(A) ∈ J . Then τ being Tukey yields

󰁖
C ∈ I, and so we conclude

that add(I) ≥ add(J ).
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Now let B ⊆ J be a basis for J . For each B ∈ B, choose AB ∈ I such that

A ⊆ AB for all A ∈ I such that τ(A) ⊆ B.

The existence of such AB’s is guaranteed due to τ being Tukey. Then the set {AB : B ∈ B }
forms a basis for I. This is because for every A ∈ I there exists B ∈ B such that τ(A) ⊆ B,
and consequently A ⊆ AB.

With Lemma 3.3.4, the final two inequalities add(M) ≥ add(L) and cof(M) ≤ cof(L) in
Cichoń’s diagram can be proven. We will not include the proof, but will leave the result below
for completeness.

Theorem 3.3.5 ([6, Theorem 7.51, Theorem 7.56], [1, Theorem 2.3.1, Theorem 2.3.7]). Equip
M

󰀃
2N

󰀄
and L

󰀃
2N

󰀄
with the partial order ⊆. Then there exists a Tukey function τ : M

󰀃
2N

󰀄
→

L
󰀃
2N

󰀄
. Consequently,

add(M) ≥ add(L) and cof(M) ≤ cof(L).

The inequalities in Theorem 3.3.5 are the final pieces of the puzzle needed to obtain all the
arrows present in Cichoń’s diagram, which we draw again in Figure 6.

ℵ1

cov(L)

add(L)

non(L)

cof(L)

2ℵ0

add(M)

cov(M)non(M)

cof(M)

b

d

Figure 6: Cichoń’s Diagram [2, End of Section 5].

No other inequalities between any two distinct cardinals present in Cichoń’s diagram are
provable in ZFC [6, Metatheorem 9.1, Metatheorem 11.7]. More specifically:
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• In the Cohen model [2, Section 11.2] [6, Equation 11.22], we have

ℵ1 = non(M) < cov(M) = 2ℵ0 .

• In the random reals model [2, Section 11.4] [6, Equation 11.23], we have

ℵ1 = d = non(L) < cov(L) = 2ℵ0 .

• In the Sacks model [2, Section 11.5] [6, Equation 11.24], we have

ℵ1 = cof(L) < 2ℵ0

• In the Hechler model [2, Section 11.6] [6, Equation 11.27], we have

ℵ1 = cov(L) < add(M) = 2ℵ0 .

• In the Laver model [2, Section 11.7] [6, Equation 11.28], we have

ℵ1 = cov(L) = non(L) < b = 2ℵ0 .

• In the Mathias model [2, Section 11.8], we have

ℵ1 = cov(L) = cov(M) < b = non(L) = 2ℵ0 .

• In the Miller model [2, Section 11.9] [6, Equation 11.36], we have

ℵ1 = non(M) = non(L) < d = 2ℵ0 .

• Kunen and Tall showed that ℵ1 < add(L) is consistent with ZFC [6, Equation 11.30].

• Kamburelis showed that cof(M) < cof(L) is consistent with ZFC [6, Equation 11.39].

We close this section, ending our tour of Cichoń’s diagram, by stating the following two
facts without proof:

Proposition 3.3.6 ([1, Corollary 2.2.9, Theorem 2.2.11]).

add(M) = min{cov(M), b} and cof(M) = max{non(M), d}.
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4 Rearrangements of Infinite Series

Throughout this section, we abbreviate a sequence (an)n∈N to (an), and we abbreviate the
series

󰁓
n∈N an to

󰁓
an. Given a bijection p : N → N, we abbreviate the rearranged sequence

(ap(n))n∈N to (ap(n)), and we abbreviate the rearranged series
󰁓

n∈N ap(n) to
󰁓

ap(n). We will
also use the words “bijection” and “permutation” interchangeably.

Given a sequence (an)n∈N of real numbers, the series
󰁓

n∈N an is said to be absolutely con-
vergent if

󰁓
n∈N |an| converges. If instead

󰁓
an converges but

󰁓
|an| does not, we say the series󰁓

an is conditionally convergent. It is well-known that
󰁓

an being conditionally convergent is
equivalent to the existence of a permutation p : N → N such that

󰁛
ap(n) ∕=

󰁛
an,

where we mean that either
󰁓

ap(n) does not converge, or
󰁓

ap(n) converges to a different real
number [20, Theorem 3.55].

Given a convergent series
󰁓

an, we may therefore say that it only takes one permutation
p : N → N resulting in

󰁓
ap(n) ∕=

󰁓
an for us to conclude that

󰁓
an is conditionally convergent.

What happens when we are not able to find such a permutation p? As Michael Hardy asked
on MathOverflow [15], “How many rearrangements must fail to alter the value of a sum before
you conclude that none do?”

4.1 The Rearrangement Number

We see that the question does not come from nowhere. Despite Riemann’s rearrangement
theorem [20, Theorem 3.55], one need not check all permutations p : N → N to guarantee
absolute convergence.

Example 4.1.1. Let p : N → N be a bijection, and suppose
󰁓

ap(n) converges. Define p∗ : N →
N by

p∗(n) :=

󰀻
󰁁󰀿

󰁁󰀽

p(1) if n = 0,

p(0) if n = 1,

p(n) if n ≥ 1.

Then
󰁓

ap∗(n) converges, and
󰁓

ap∗(n) =
󰁓

ap(n). Indeed, for any permutation p̃ which is a
finite alteration of p, we will have that

󰁓
ap̃(n) converges and

󰁓
ap̃(n) =

󰁓
ap(n).

Effectively, checking just one permutation would check ℵ0-many permutations simultane-
ously. Motivated by this, we define the rearrangement number rr to be the minimum number
of rearrangements we would need to check to guarantee absolute convergence.

Definition 4.1.2 (Rearrangement Number, [3, Definition 1]). A subset RR ⊆ NN is a rear-
rangement set if RR only consists of bijections, and for any conditionally convergent series

󰁓
an

there exists p ∈ RR such that
󰁓

ap(n) ∕=
󰁓

an (in the sense of
󰁓

ap(n) diverging, or
󰁓

ap(n)
converging to a different limit). The rearrangement number rr is the smallest cardinality of all
rearrangement sets, i.e.

rr := min{ |RR| : RR is a rearrangement set }.

Arguing as in Theorem 3.1.4, we have that rr ≤ 2ℵ0 . Following the results in The Rear-
rangement Number [3], we will show that rr is indeed a cardinal characteristic of the continuum
by establishing several inequalities between rr and cardinals which appear in Cichoń’s diagram.
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4.2 Connections with Cichoń’s Diagram

A priori, we would first like to prove that rr ≥ ℵ1. We do this by proving the inequality rr ≥ b,
where b is the unbounding number, because we already know that b ≥ ℵ1 by Theorem 3.1.4.
The strategy of the proof, as named in The Rearrangement Number [3, Section 3], is to pad a
conditionally convergent series with so many zeros that collections of permutations which are
unbounded fail to affect the relative ordering of all but finitely many non-zero terms.

Theorem 4.2.1 ([3, Theorem 15, Theorem 16]). rr ≥ b.

Proof. Let RR be a rearrangement set with |RR| = rr, and suppose for a contradiction that
rr < b. We will construct a conditionally convergent series

󰁓
an such that for all p ∈ RR, we

have
󰁓

ap(n) =
󰁓

an, contradicting RR being a rearrangement set.

We will construct this
󰁓

an from the alternating harmonic series
󰁓 (−1)n

n+1 , which we know is

conditionally convergent. The strategy is to define (an) to have all the terms of
󰀓
(−1)n

n+1

󰀔
in the

same order, but with a large number of zeroes in between each term so that any rearrangement in
RR only affect the relative ordering of finitely many non-zero terms. We do this by constructing
a strictly increasing function ζ : N → N so that (an)n∈N is of the form

(an) =

󰀕
0, . . . , 0, 1, 0, . . . , 0, −1

2
, 0, . . . , 0,

1

3
, 0, . . . , 0, −1

4
, . . .

󰀖
, (2)

where aζ(0) = 1, aζ(1) = −1
2 , aζ(2) =

1
3 , and so on. We would have that

󰁓
an is also conditionally

convergent and that
󰁓

an =
󰁓 (−1)n

n+1 , because we only inserted zeroes into the series and did
not rearrange any non-zero terms. For each p ∈ RR we want to ensure that the series

󰁓
ap(n)

converges to the same value as
󰁓

an. To achieve this, we will require that p only affects the
relative positioning of the finitely many non-zero terms of (an). In particular, if we fixed any
p ∈ RR, then we want there to exist someN ∈ N for which if k ≥ N then the relative positioning
of the terms aζ(k) and aζ(k+1) in the series remain unchanged after applying the permutation p.
Noting that the permutation p would send the term at position ζ(k) to position p−1(ζ(k)), we
would want

p−1(ζ(k)) < p−1(ζ(k + 1)) for all k ≥ N.

To achieve this, we want ζ : N → N to have the following two properties:

(1) for all k ∈ N, we have ζ(k + 1) > ζ(k),

(2) for all p ∈ RR, there exists some N ∈ N such that

for all k ≥ N we have ζ(k + 1) /∈ { p(j) : j ∈ N and j ≤ p−1(ζ(k)) }.

Since p is bijective, this is equivalent to the condition p−1(ζ(k + 1)) > p−1(ζ(k)) for all
k ≥ N , which in turn ensures that

󰁓
ap(n) =

󰁓
an.

We will define this ζ by exploiting the assumption that rr < b. For every p ∈ RR, define
fp : N → N by

fp(x) := max
j∈N,

j≤p−1(x)

p(j) for all x ∈ N. (3)

Intuitively, fp(x) is chosen so that, under p−1, all the numbers strictly larger than fp(x) are
mapped to numbers strictly larger than p−1(x). The family of functions F := { fp : p ∈ RR }
then satisfies F ⊆ NN and |F| ≤ rr < b. So there exists some g ∈ NN such that g ≥∗ fp for all
fp ∈ F . Now we recursively define ζ : N → N by

ζ(0) := g(0),

ζ(k + 1) := ζ(k) + g(ζ(k)) + 1 for all k ∈ N.

27



By construction, the function ζ is strictly increasing. We can now define the sequence (an) in
Equation (2) as follows: for every n ∈ N,

an :=

󰀫
(−1)k

k+1 if n = ζ(k) for some (unique) k ∈ N,
0 otherwise,

We now only need to show that all permutations p ∈ RR preserve the relative ordering of all
but finitely many non-zero terms in the series

󰁓
an to complete the proof.

For any p ∈ RR, obtain the associated function fp from Equation (3). Then there exists
some N ∈ N such that if k ≥ N then g(ζ(k)) ≥ fp(ζ(k)), because ζ is strictly increasing and
g ≥∗ fp. The definitions of fp, g, and ζ yield

fp(ζ(k)) ≤ g(ζ(k)) < ζ(k + 1) for all k ≥ N.

So for any j ∈ N with j ≤ p−1(ζ(k)), the definition of fp in Equation (3) gives us p(j) ≤ fp(ζ(k)),
and so we have p(j) < ζ(k + 1). This yields ζ(k + 1) /∈ { p(j) : j ∈ N and j ≤ p−1(ζ(k)) } as
desired.

We can also establish that cov(L) is a lower bound for rr. To do this, we will work in 2N and
make use of the following lemma by Hans Rademacher (as cited in The Rearrangement Number
[3, Lemma 18]), which we will state but not prove.

Lemma 4.2.2 ([3, Lemma 18]). Let (cn) be a sequence of real numbers, and define

A :=

󰀫
s ∈ 2N :

󰁛

n∈N
(−1)s(n)cn converges

󰀬
.

If
󰁓

c2n converges, then the Lebesgue measure of A is 1. Otherwise if
󰁓

c2n diverges, then the
Lebesgue measure of A is 0.

We will now prove that rr ≥ cov(L). The strategy of the proof is to augment to a rear-
rangement set RR a countable set of permutations so that the augmented set will make any
conditionally convergent series diverge. Since |RR| ≥ ℵ1, by Theorem 4.2.1, the augmented set
will still have the same cardinality as RR. We will then use Lemma 4.2.2 on this augmented
set to extract a contradiction.

Theorem 4.2.3 ([3, Theorem 6, Lemma 7, Theorem 19]). rr ≥ cov(L).

Proof. For ease of reading, let us use {τ(0), . . . , τ(n)} to denote { τ(t) : t ∈ N and 0 ≤ t ≤ n },
where τ(x) is a term with free variable x.

For each bijection q : N → N we will define another bijection gq : N → N with the following
two properties:

• {gq(0), . . . , gq(n)} = {q(0), . . . , q(n)} for infinitely many n ∈ N,

• {gq(0), . . . , gq(n)} = {0, . . . , n} for infinitely many n ∈ N.

Intuitively, as we increase n, we want the range of gq|{0,...,n} to keep oscillating between the
ranges of q|{0,...,n} and id|{0,...,n}, where id : N → N denotes the identity function on N. To do

this, for each k ∈ N, we define functions gkq recursively as follows:

(1) Define g0q : {0} → N by gq(0) := q(0).
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(2) For k ∈ N, suppose gkq : {0, . . . , nk} → N is already defined. Let

nk+1 :=

󰀫
1 + min

󰀋
n ∈ N : Range

󰀃
gkq
󰀄
⊆ {0, . . . , n}

󰀌
, if k is even,

1 + min
󰀋
n ∈ N : Range

󰀃
gkq
󰀄
⊆ {q(0), . . . , q(n)}

󰀌
, if k is odd.

Then define gk+1
q : {0, . . . , nk+1} → N by extending the domain of gkq and bijectively

mapping the remaining elements of {nk + 1, . . . , nk+1} into {0, . . . , nk+1} \Range
󰀃
gkq
󰀄

if k is even, or into {q(0), . . . , q(nk+1)} \ Range
󰀃
gkq
󰀄
if k is odd.

If we considered functions as sets of ordered pairs, we would have g0q ⊆ g1q ⊆ g2q ⊆ · · · . We can

thus let gq : N → N be the common extension of all the gkq ’s, and this would be a bijection which
satisfies our desired properties.

Now let RR be a rearrangement set with |RR| = rr. Define RRio := RR ∪ { gq : q ∈ RR }.
Then RRio is a rearrangement set such that for any conditionally convergent series

󰁓
an, there

exists some permutation p ∈ RRio such that
󰁓

ap(n) diverges.
13 Indeed, if no rearrangements

in RR yields a divergence, then there exists some q ∈ RR such that
󰁓

aq(n) converges to a
finite limit different to

󰁓
an, and so the associated gq will make

󰁓
agq(n) diverge by oscillation.

Also note that |RRio| = |RR| = rr since RR has an infinite cardinality by Theorem 4.2.1.
Next, for each permutation p ∈ RRio, define fp : 2

N → 2N by

fp(s) := s ◦ p,

and define Ap ⊆ 2N by

Ap :=

󰀫
s ∈ 2N :

󰁛

n∈N

(−1)s(n)

p(n) + 1
diverges

󰀬
.

It is clear that fp is bijective. Recall that the Lebesgue measure λ2N is defined on the σ-algebra
generated by the π-system

B :=

󰀫
󰁜

n∈N
Bn : Bn ⊆ {0, 1}, and Bn = {0, 1} for all but finitely many n ∈ N

󰀬

of open sets which form a basis for the topology of 2N. For each
󰁔

n∈NBn ∈ B, observe that

λ2N

󰀣
󰁜

n∈N
Bn

󰀤
=

󰁜

n∈N

|Bn|
2

=
󰁜

n∈N

󰀏󰀏󰀏Bf−1
p (n)

󰀏󰀏󰀏
2

= λ2N

󰀣
f−1
p

󰀣
󰁜

n∈N
Bn

󰀤󰀤

because
󰀏󰀏󰀏Bf−1

p (n)

󰀏󰀏󰀏 = 2 for all but finitely many n ∈ N. Thus, by Dynkin’s π-λ theorem [13,

Lemma 2.4, Theorem 3.2], the map A 󰀁→ f−1
p (A) is measure-preserving on the entire σ-algebra

generated by B. Now since
󰁓 1

(p(n)+1)2
is a rearrangement of the absolutely convergent series

󰁓 1
(n+1)2

, Lemma 4.2.2 implies that Ap ∈ L
󰀃
2N

󰀄
. Hence f−1

p (Ap) ∈ L
󰀃
2N

󰀄
for all p ∈ RRio.

Finally, suppose for a contradiction that rr < cov(L). Then there exists some s̃ ∈ 2N such
that

s̃ /∈
󰁞

p∈RRio

f−1
p (Ap) =

󰁞

p∈RRio

󰀫
s ∈ 2N :

󰁛

n∈N

(−1)s(p(n))

p(n) + 1
diverges

󰀬
,

as |{ f−1
p (Ap) : p ∈ RRio }| ≤ rr. In particular, for all p ∈ RRio, the series

󰁓 (−1)s̃(p(n))

p(n)+1
converges. This contradicts the construction of RRio, as it fails to make that series diverge
despite it being conditionally convergent.

13In particular,
󰁓

ap(n) will either diverge to infinity (∞ or −∞) or will diverge by oscillation. This explains
the choice of the name RRio, which is inspired from the cardinal rrio in The Rearrangement Number [3, Definition
2].
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We have established two lower bounds for rr, namely b ≤ rr and cov(L) ≤ rr. It turns out
that both the strict inequalities b < rr and cov(L) < rr are consistent with ZFC [3, Corollary
21].

We will now establish non(M) as an upper bound for rr. To do this, we will work with
the topology of the subspace Sym(N) of all bijections in NN. It turns out, that this subspace
Sym(N) is homeomorphic to all of NN. This is a fact we will state but not prove.

Lemma 4.2.4 ([3, Theorem 11], [17, Theorem 7.7]). The set Sym(N), viewed as a subset of NN

equipped with the subspace topology, is homeomorphic to the whole space NN.

As a corollary of Lemma 4.2.4 and Lemma 2.2.4, we have that

ch
󰀓
M

󰀓
NN

󰀔󰀔
= ch(M(Sym(N)))

for each ch ∈ {add, cov,non, cof}. We are now ready to prove that rr ≤ non(M). The
strategy of the proof is to show that for any conditionally convergent series

󰁓
an, the collection

of all permutations p ∈ Sym(N) such that
󰁓

ap(n) ∕=
󰁓

an forms a comeagre set. As such, any
non-meagre set must intersect this collection.

Theorem 4.2.5 ([3, Theorem 11]). rr ≤ non(M).

Proof. We work in Sym(N).
For any conditionally convergent series

󰁓
an, let D(an) be the set of all p ∈ Sym(N) for

which the sequence
󰀃󰁓m

n=0 ap(n)
󰀄
m∈N contains a subsequence which diverges to ∞. That is,

letting

U
(an)
k :=

󰁞

m∈N,
m≥k

󰀫
p ∈ Sym(N) :

m󰁛

n=0

ap(n) ≥ k

󰀬
for each k ∈ N,

we define D(an) :=
󰁗

k∈N U
(an)
k . Note that if p ∈ D(an) then

󰁓
ap(n) cannot converge.

For each conditionally convergent series
󰁓

an, and for each k ∈ N, we will show that the

set U
(an)
k is open and dense in Sym(N). For every p ∈ U

(an)
k , by definition of U

(an)
k , there exists

some m ≥ k such that
󰁓m

n=0 ap(n) ≥ k. Hence

p ∈
󰀓
{p(0)}× · · ·× {p(m)}× N× N× N× · · ·

󰀔
∩ Sym(N) ⊆ U

(an)
k

where we view the function p as the infinite ordered list (p(0), p(1), . . . ). Recalling that the set
󰀓
{p(0)}× · · ·× {p(m)}× N× N× N× · · ·

󰀔

is open in NN, we conclude that U
(an)
k is open in Sym(N). So it remains to show that U

(an)
k

is dense in Sym(N). Fix any p ∈ Sym(N). We claim that for each d ∈ N, there exists some

h ∈ U
(an)
k such that

h|{0,...,d} = p|{0,...,d}.
Indeed, we can construct such a bijection h : N → N as follows:

(1) For each x ∈ {0, . . . , d}, we set h(x) := p(x).

(2) Choose a large enough, but finite, collection of distinct numbers i1, . . . , iN from the set

{d+ 1, d+ 2, d+ 3, · · · }

such that
󰁓N

j=1 ap(ij) ≥ k −
󰁓d

n=0 ap(n).
14 Then we set

h(d+ j) := p(ij) for each j ∈ {1, . . . , N}.
14This is always possible because

󰁓
an is conditionally convergent, and so the sum of all the positive terms

must diverge to ∞.
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(3) Choose any bijection g : N \ {0, . . . , d +N} → N \ {h(0), . . . , h(d +N)}, and then set
h(x) := g(x) for all x ∈ N \ {0, . . . , d+N}.

Step (1) in the construction above gives us h|{0,...,d} = p|{0,...,d}. Step (2) gives us the inequality
󰁓d+N

n=0 ah(n) ≥ k. Step (3) ensures h is surjective. Thus, for every open set V ⊆ Sym(N) with

p ∈ V , there exists some h ∈ U
(an)
k such that h ∈ V . Hence U

(an)
k is dense in Sym(N).

Therefore D(an) =
󰁗

k∈N U
(an)
k is a countable intersection of open and dense sets in Sym(N).

In particular, the set Sym(N) \D(an) =
󰁖

k∈N

󰀓
Sym(N) \ U (an)

k

󰀔
is meagre in Sym(N).

Finally, let C ⊆ Sym(N) be non-meagre set with |C| = non(M). Then for every conditionally
convergent series

󰁓
an, there exists some p ∈ C such that p ∈ D(an). This is because if

C ⊆ Sym(N) \D(an) then C would be meagre. So, by the construction of D(an), the rearranged
series

󰁓
ap(n) cannot converge. Therefore C is a rearrangement set, and we thus conclude that

rr ≤ |C| = non(M).

We draw the rearrangement number with Cichoń’s diagram in Figure 7.

ℵ1

cov(L)

add(L)

non(L)

cof(L)

2ℵ0

add(M)

cov(M)

non(M)

cof(M)

b

d

rr

Figure 7: Cichoń’s Diagram with the Rearrangement Number.
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4.3 Open Questions

It is an open question whether rr < non(M) is consistent with ZFC [3, Question 54]. In a
personal correspondence with me over email, Will Brian, one of the co-authors of The Rear-
rangement Number [3], wrote the following:

We wanted to show the consistency of rr < non(M). The reason we wanted this,
more or less, is that non(M) is the best candidate amongst the Cichoń diagram
cardinals for being equal to rr, but we suspect they’re not equal. . . . The main
obstacle here is just that it’s tricky to get models for cov(L), b < non(M) (and
this would be necessary, since cov(L), b ≤ rr), and the known ways of getting such
models don’t seem super flexible.

— Will Brian, October 2023.

Furthermore, it is not known how rr behaves in relation to other cardinals in Cichoń’s
diagram [3, Question 55], apart from the immediate inequalities obtained from Figure 7.

Another two cardinal characteristics of the continuum, which we have not discussed, are the
splitting number s and the subseries number ß.

Definition 4.3.1 (Splitting Number, [5, Definition 6]). The splitting number s is the smallest
cardinality of any collection C ⊆ P(N) such that, for all infinite B ⊆ N there exists some A ∈ C
such that both A ∩B and (N \A) ∩B are infinite.

Definition 4.3.2 (Subseries Number, [5, Definition 1]). The subseries number ß is the smallest
cardinality of any collection C ⊆ P(N) such that, for all conditionally convergent series

󰁓
n∈N an

there exists some A ∈ C such that the subseries
󰁓

n∈A an diverges.

The following are among the facts that were proven in the paper The Subseries Number [5]:

• s ≤ ß, [5, Theorem 7],

• cov(L) ≤ ß ≤ non(M), [5, Theorem 11, Theorem 13],

• rr ≤ max{b, ß}, [5, Theorem 19],

• ß < b = rr is consistent with ZFC, [5, Section 9].

It is an open question whether the inequalities rr < ß and rr < max{b, ß} are consistent
with ZFC [5, Question 20]. In the same email where the quote above appeared, Will Brian also
wrote the following about the cardinals rr, s, and ß:

We wanted to prove the consistency of rr < s. This problem arose after investigating
the subseries number in a follow-up paper to the one about rearrangements. In this
paper, one of our main theorems was proving that ß can be < rr. This happens in
the Laver model. The hard part is showing that ß = ℵ1 in the Laver model, but
it’s easy to see that rr = 2ℵ0 , because we know that b ≤ rr and that b = 2ℵ0 in the
Laver model. We were hoping for a “dual” sort of proof where we could show the
consistency of rr < s and then conclude (because s is a lower bound for ß) that rr
can be less than ß. But we were never able to find a way of proving rr < s.

— Will Brian, October 2023, adapted.
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